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Abstract

This thesis discusses parallel implementation of dual iterative substructuring methods,

particularly FETI-DP method and enhanced penalty method. We optimize the algorithm

for the enhanced penalty method and compare its performance with the FETI-DP method,

which is the most renowned substructuring method. The substructuring method divides the

domain into local subdomains and allocates each of them into parallel processors to solve

the local problems. Enhanced penalty method adds a strong continuity constraint to the

FETI-DP method by measuring the difference on the edge, which we call the penalty term.

This additional term accelerates the convergence, but produces more data communication

between processors. It is not easy to compare the performance between the two methods.

However, it is obvious that optimizing the communication routine will be crucial in the

performance of the enhanced penalty method.

Here, we present the process of optimizing communication routines in the enhanced

penalty method. Our analysis shows that calculating the global inner product is the most

expensive communication step in this algorithm and a parallel computer with effective net-

work and memory system that can gather the values from all processor simultaneously is

needed for efficient implementation. Overall, we conclude that FETI-DP method is recom-

mended when the subdomain problem size is small and enhanced penalty method becomes

more effective when the subdomain problem size is above certain level. Both method turn

out to be efficient solvers for the elliptic partial differential equation when parallel computer

is available. But the choice among FETI-DP and enhanced penalty method must be made

carefully considering the number of processors, computing power, and network performance

of the parallel computer. Particularly, for our test problem in two dimensional domain, en-

hanced penalty method becomes more efficient when the local problem size becomes larger

than 128×128 in 2 dimensional problem in the Gaia system.
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1. Introduction

For recent several decades, parallel computers have become popular and as a result, parallel

algorithms have been studied as effective solvers for large problems. Domain decomposition

method is a numerical solver for partial differential equation, that can be used in parallel

computers. The basic idea is to divide the domain into several parts and solve the governing

equation on each of the local subdomains. Computation on the local subdomains can be

distributed into the parallel processors. After solving the local problems, the solutions are

assembled to obtain the global solution. The method usually includes interconnecting pro-

cedure or some constraints that ensure the local solutions become identical on the interfaces

of the local subdomains or overlapping regions.

Particularly, dual iterative substructuring method is adapted to solve the self adjoint

second order elliptic partial differential equation with boundary condition. The domain is

divided into non-overlapping subdomains, and then a finite element solution is obtained

with iterative methods.

As a dual iterative substructuring method, the Finite Element Tearing and Intercon-

necting (FETI) method [1] was suggested by Farhat and Roux. The continuity constraints

given on the boundary of the subdomains are imposed by Lagrange multipliers. The system

is reduced by eliminating the subdomain variables except for the Lagrange multipliers, then

the remaining system is solved with the preconditioned conjugate gradient (PCG) method.

The method solves the partial differential equation on each subdomain and the Lagrange

multipliers match the boundary condition. In spite of the additional variables and compu-

tational cost on the interface, the algorithm is simple and robust compared to the other

substructuring methods.

Figure 1.1: Decomposed domains with subdomain size H and mesh size h.
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The convergence can be estimated by the condition number of the system matrix, which

we solve with the PCG method. Let ek be the error of the k-th iteration of the PCG

method and κ be the condition number of the preconditioned system matrix. Then ek can

be estimated as ‖ek‖ ≤ 2
(√

κ−1√
κ+1

)k
‖e0‖, where ‖ · ‖ is the norm defined on the solution

space [2]. It is shown in [3] that the condition number of the FETI method is bounded

by O
((

1 + log H
h

)3)
, which means that it is numerically scalable algorithm with respect to

H/h, where H is the subdomain size and h is the mesh size. However, the FETI method

includes a procedure for solving the singular problems that occur when all corners of the

subdomain are not attached to the boundary of the whole domain.

Dual Primal FETI (FETI-DP) method [4], also suggested by Farhat et al., is one of

the most advanced dual iterative substructuring methods. It improved the FETI method

by removing the corner singularity. The degree of freedoms at the corners are reduced

by defining them as a common node over the surrounding subdomains. The continuity

constraint on the interface is stronger than the FETI method, since the corner’s continuity

is directly imposed. Lagrange multipliers are defined as usual on the edge nodes except the

corner nodes. In two dimensional problems, the condition number bound estimation turned

out to be O
((

1 + log H
h

)2)
in [5] and the convergence was accelerated.

Enhanced penalty method [6] is a variant of FETI-DP method, on which this paper is

primarily based. A penalty function is added to the Lagrangian functional and it measures

the difference between the interface nodes of the adjacent subdomains. This term con-

tains positive parameter η across the subdomains so that it enforces a stronger continuity

constraint than FETI-DP method. As a result, the condition number bound is estimated

as 3
(
C
η + 1

)
, a constant only containing the imposed parameter η. In other words, the

convergence is independent of the mesh size h.

The implementation of these methods on parallel computers includes several issues and

it is hard to compare the performance between them at a glance. Enhanced penalty method

seems to be superior to FETI-DP method in terms of the condition number estimate, but

the algorithm includes additional computation on the interface nodes coming from the added

penalty function. Also, it contains far more communication between processors than FETI-

DP method, which means that the overall effectiveness can be largely affected by the network

system. Moreover, while FETI-DP method is computed separately on each subdomain scale,

enhanced penalty method is solved as a whole system in a global scale.

In this thesis, we will briefly review the dual iterative substructuring methods including

FETI-DP method and enhanced penalty method and computationally verify the theoretical

results. Then we will compare the performance on parallel computers between them.
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2. Domain Decomposition Method

2.1 Dual substructuring method

In this section, we will show the basic idea of dual substructuring method by considering the

simple Poisson problem with homogeneous Dirichlet boundary condition on two separated

domains. First, we consider the Poisson problem on a bounded polygonal domain Ω ⊂ R2

as
− ∆u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where f is an L2 function on Ω. It is well known that the solution of (2.1) is equivalent to

the minimizer of the variational problem,

min
v∈H1

0 (Ω)
J (v) = min

v∈H1
0 (Ω)

(
1
2
a(v, v)Ω − (f, v)Ω

)
,

where

a(u, v)Ω =
∫

Ω

∇u · ∇vdx,

(f, v)Ω =
∫

Ω

fvdx.

As usual, H1(Ω) and H1
0 (Ω) are the Sobolev spaces defined as

H1(Ω) = {v ∈ L2(Ω)| ∂αv ∈ L2(Ω), |α| ≤ 1},

H1
0 (Ω) = {v ∈ H1(Ω)| v|∂Ω = 0}.

Respectively, to investigate the idea of dual iterative substructuring method, let’s divide the

domain into two non-overlapping subdomains {Ωi}2i=1 such that Ω =
⋃2
i=1 Ωi. Then (2.1)

becomes equivalent to

min
vi∈H1(Ωi)

vi=0 on ∂Ω∩∂Ωi

v1=v2 on ∂Ω1∩∂Ω2

2∑
i=1

Ji(vi) = min
vi∈H1(Ωi)

vi=0 on ∂Ω∩∂Ωi

v1=v2 on ∂Ω1∩∂Ω2

2∑
i=1

(
1
2
a(vi, vi)Ωi

− (f, vi)Ωi

)
.

The two minimizing solutions on each subdomains are attached at the interface by the

continuity constraint to guarantee the continuity of the whole solution. This condition

3



ensures the local minimizing solutions u1 and u2 be equal to the solution of the original

problem.

To implement the constraint, various approaches have been made such as Lagrange

multiplier, penalty function, and augmented Lagrange methods. In this section, we will

introduce the Lagrange multiplier based method. Suppose that µ is a Lagrange multiplier

defined on the interface Γ = ∂Ω1∩∂Ω2, which we call the dual variable. Then the variational

problem becomes equivalent to finding the solution (u1, u2, λ) of the saddle point problem,

min
vi∈H1(Ωi)

max
µ∈L2(Γ)

(
2∑
i=1

Ji(vi) + (v1 − v2, µ)Γ

)
. (2.2)

The Lagrange multiplier forces the saddle point solution u1 and u2 to attain the same value

on Γ. Now we will formulate a numerical method using finite elements with the parallel

structure of the subdomains generated by domain decomposition.

2.2 Finite Element Tearing and Interconnecting meth-

ods

Before we introduce the numerical method, let’s define the finite element space and notations

related to the finite element approximation. The P1 conforming finite element space on Ω

is defined as

Sh = {vh ∈ H1
0 (Ω) ∩ C0(Ω)| ∀τ ∈ Th, vh|τ ∈ P1(τ)},

where C0(Ω) is the space of continuous function on Ω, Th is the family of regular triangu-

lations on Ω, P1(τ) is the standard P1 conforming space and h is the maximal mesh size

of Th. Then the finite element approximation of the Poisson problem (2.1) becomes finding

uh ∈ Sh to satisfy

a(uh, vh) = (f, vh) ∀vh ∈ Sh, (2.3)

which is equivalent to the variational problem

min
v∈Sh

(
1
2
a(v, v)− (f, v)

)
.

Now, let’s formulate the finite element space of the decomposed domains. Suppose

that we divide the domain Ω into N non-overlapping subdomains {Ωs}Ns=1, where Ωs is a

polygonally shaped open subset of Ω. Also, we define the common interface of adjacent

subdomains Ωs and Ωt as Γst = ∂Ωs ∩ ∂Ωt and the union of common interfaces as Γ =⋃
s<t Γst. Then, the finite element space on the subdomain Ωs can be similarly defined as

Xs
h = {vsh ∈ H1(Ωs) ∩ C0(Ωs)|∀τ ∈ T sh , vsh|τ ∈ P1(τ), vsh|∂Ω∩∂Ωs

= 0},
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where T sh is the regular triangulation of subdomain Ωs and h is the maximal mesh size

among all subdomains. Xs
h’s can be assembled into Xh as

Xh =

{
v | v = {vsh}Ns=1 ∈

N∏
s=1

Xs
h

}

equipped with the norm ‖v‖Xh
=
(∑N

s=1 ‖vsh‖2H1(Ωs)

) 1
2
, where ‖·‖H1(Ωs) is the usual Sobolev

norm.

The variational formulation can be converted into finding the minimizer of energy func-

tional J : Xh → R defined as

min
v∈Xh

J (v) = min
v∈Xh

(
1
2
ah(v, v)− (f, v)

)
subject to Bv = 0, (2.4)

where ah(u, v) =
∑N
s=1

∫
Ωs
∇u · ∇vdx is a bilinear functional on Xh × Xh, B is a signed

Boolean matrix enforcing the pointwise continuity condition on the interface, and (f, v) =∑N
s=1

∫
Ωs
fvdx.

As we mentioned, the FETI method imposes the continuity constraint along the inter-

face using Lagrange multipliers. Suppose that the Lagrange multiplier vector µ is in the

Euclidean space RE with the usual Euclidean inner product 〈 · , · 〉, where E is the number

of the matching points on the interface. Then the saddle point solution (u, λ) of Lagrangian

functional L : Xh ×RE → R,

min
v∈Xh

max
µ∈RE

L(v, µ) = min
v∈Xh

max
µ∈RE

(J (v) + 〈Bv, µ〉)

equals to the solution of (2.4). Moreover, the above saddle point problem can be converted

into a saddle point system as finding (u, λ) ∈ Xh ×RE satisfying

ah(u, v)− 〈Bv, λ〉 = (f, v) ∀v ∈ Xh

〈Bu, µ〉 = 0 ∀µ ∈ RE .
(2.5)

This formula can be written into an algebraic system, and we obtain the finite element

solution of (2.3) by solving the algebraic system with an appropriate solver.

The FETI method is a highly efficient method regarding the computation and conver-

gence property. However, the problem includes solving the pseudo inverse because it involves

singular problems when all corners of the subdomain are not attached to the boundary of

the whole domain. FETI-DP method resolves this problem by imposing a single degree of

freedom at the corner node. The corner point of the surrounding subdomains is defined as

a common node. Let’s define the finite element space including this property by assembling

5



(a) (b) (c)

Figure 2.1: Characterization of Finite Element Tearing and Interconnecting methods : (a)

FETI, (b) FETI-DP, and (c) enhanced penalty method

the Xs
h’s as

XC
h = { v | v = {vsh}Ns=1 ∈

N∏
s=1

Xs
h, v is continuous at each corner },

equipped with the same norm defined as in the space Xh.

FETI-DP method finds the solution on XC
h instead of Xh. The only difference from

the FETI method is that the continuity constraint at the corner is directly imposed in the

solution space. The variational formula and the saddle point formula are defined on XC
h .

The saddle point problem of FETI-DP method becomes solving the Lagrangian functional

L(v, µ) defined on XC
h ×RE as

min
v∈XC

h

max
µ∈RE

L(v, µ) = min
v∈XC

h

max
µ∈RE

(J (v) + 〈Bv, µ〉) , (2.6)

where J (v) is the energy functional on XC
h . We can easily observe that the saddle point

solution (u, λ) ∈ XC
h ×RE equals to the solution of the original problem (2.3).

Enhanced penalty method slightly changes FETI-DP method by imposing a stronger

continuity constraint on the interface than FETI-DP method. We define a bilinear function

on XC
h ×XC

h as

Jη(u, v) =
∑
s<t

η

h

∫
Γst

(us − ut)(vs − vt)ds, η > 0.

The method adds this penalty function to the Lagrangian functional, which evaluates the

difference of a function between the interface nodes across the subdomains. The difference

is measured with the L2 norm multiplied by a positive parameter η and divided by the

6



maximal mesh size h. Now our saddle point formulation becomes

min
v∈XC

h

max
µ∈RE

Lη(v, µ) = min
v∈XC

h

max
µ∈RE

(
L(v, µ) +

1
2
Jη(v, v)

)
. (2.7)

The symmetry and XC
h -ellipticity of the ah(v, v) are maintained in aη(u, v) = ah(u, v) +

Jη(u, v) and Jη(v) = 1
2aη(v, v)− (f, v) satisfies

Jη(uh) = min
v∈XC

h ,Bv=0
Jη(v) = min

v∈Xh

J (v).

Therefore, the saddle point problem (2.7) is uniquely solvable and it obtains the same

solution as the original problem (2.3). We can also check the convergence of the finite

element solution uh to the Poisson problem (2.1).

We give a remark that the Lagrangian of enhanced penalty method (2.7) contains two

terms 〈Bv, µ〉 and Jη(v, v) to impose the continuity constraint. If we choose η = 0, the

enhanced penalty method is identical to FETI-DP method. Alternatively, if we remove the

Lagrangian multiplier term, the penalty function solely imposes the continuity constraint

to the minimizer. It seems that the combination of these two terms is redundant, but the

enhanced penalty method benefits from the advantage of both approaches. Generally, the

pointwise matching term 〈Bv, µ〉 has slow convergence but ensures the convergence to the

solution. On the other hand, the penalty term Jη(v, v) accelerates the convergence of the

method but needs sufficiently large η for numerical stability. By merging the both terms, the

penalty term accelerates the convergence of 〈Bv, µ〉 and the pointwise matching term ensures

the numerical stability of Jη(v, v) without increasing the parameter η. This combination of

both terms accomplishes a powerful result which makes the enhanced penalty method as a

strongly scalable algorithm.
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3. Implementation of Dual Iterative

Substructuring Methods

3.1 Algebraic formulation and computational issues

In this section, we will derive the algebraic formulation of the dual iterative substructuring

methods and discuss the computational issues of the algorithm.

We will start from the saddle point system of the FETI method (2.5). Suppose that K

represent the stiffness matrix generated from ah(v, v). Then the algebraic system can be

written as [
K BT

B 0

][
u

λ

]
=

[
f

0

]
,

where K = diag(K1, · · · ,KN ) is a block diagonal matrix, Ks is the subdomain stiffness

matrix on Ωs, and B =
[
B1 · · · BN

]
is a signed Boolean matrix.

The algebraic system above can be rewritten in terms of the dual variable λ. Note

that while solving the system in terms of us, we must calculate the pseudo inverse in the

subdomains where Ks is singular.

To introduce the algorithm of FETI-DP method [4], we regard the corner nodes as

having multiple values but in fact equal. First, let’s split the degree of freedom vector on

each subdomain as

us =


usi

use

usc

 =

[
usr

usc

]
,

where usi denotes the degree of freedom in the interior of the subdomains, usc the degree of

freedom at the corner nodes, and use the remaining degree of freedom on the interface edge.

Again, let usr be the assembled degree of freedom on the interior and edge except for the

corner nodes. We decompose the subdomain stiffness matrix Ks using these notations as

Ks =


Ks
ii Ks

ie Ks
ic

Ks
ie
T Ks

ee Ks
ec

Ks
ic
T Ks

ec
T Ks

cc

 =

[
Ks
rr Ks

rc

Ks
rc
T Ks

cc

]
.

Here, each block matrix represents the corresponding stiffness matrix. For example Ks
ii is

the interior stiffness matrix on the subdomain Ωs. Then, the system matrix of FETI-DP

8



method can be formulated as
K1
rr · · · 0 K1

rcL
1
c

...
. . .

...
...

0 · · · KN
rr KN

rcL
N
c

L1
c
T
K1
rc
T · · · LNc

T
KN
rc
T ∑N

s=1 L
s
c
TKs

ccL
s
c




u1
r

...

uNr

uc

 =


f1
r −B1Tλ

...

fNr −BN
T
λ∑N

s=1 L
s
c
T fsc

 ,
N∑
s=1

Bsusr = 0

where uc is the global vector of the corner degree of freedoms and Lsc is the matrix connecting

the global corner vector uc to each subdomain corner nodes, i.e., usc = Lscuc. We rewrite the

system as 
Krr Krc BT

Krc
T Kcc 0

B 0 0



ur

uc

λ

 =


fr

fc

0

 , (3.1)

where Kcc =
∑N
s=1 L

s
c
TKs

ccL
s
c is the global corner stiffness matrix, Krr is a block diago-

nal subdomain stiffness matrix restricted to the remaining nodes, and Krc is the coupling

stiffness matrix between them. Note here that the Ks
rr matrix is symmetric positive defi-

nite, which means that it is invertible. This is one of the major advantage of the FETI-DP

method, so that we can invert each block system in terms of usr without calculating the

pseudo inverse. Then we can convert the system into[
Fcc Frc

T

Frc Frr

][
uc

λ

]
=

[
−dc
dr

]
,

where

Frr =
N∑
s=1

Bs(Ks
rr)
−1BsT ,

Frc =
N∑
s=1

Bs(Ks
rr)
−1KrcL

s
c,

Fcc = Kcc −
N∑
s=1

[
(Ks

rcL
s
c)
T (Ks

rr)
−1(Ks

rcL
s
c)
]
,

dr =
N∑
s=1

Bs(Ks
rr)
−1fsr ,

dc =
N∑
s=1

(
Lsc

T fsc − Lsc
TKs

rc
T (Ks

rr)
−1fsr

)
.

9



The system can be reduced in terms of the dual variable λ as

Fλ :=
(
Frr + Frc(Fcc)−1Frc

T
)
λ = dr − Frc(Fcc)−1dc (3.2)

and this dual system matrix can be solved iteratively by preconditioned conjugate gradient

(PCG) method since F is symmetric positive definite. Inside the CG algorithm, calculation

with the matrix F is split into calculation with Frr and with Frc(Fcc)−1Frc
T . The second

step includes solving Fcc which we call the course problem, and this can also be solved with

the CG method.

Every matrix notated in (3.2) consists of the summation over the subdomains. This

feature makes FETI-DP method easily parallelizable, i.e., it can be calculated separately

in subdomain level and then summed up. Another thing to notice is that all matrices

contain solving the stiffness matrix Ks
rr
−1. This can also be solved directly or iteratively

with CG method. In fact, we will use direct Cholesky decomposition to solve this matrix.

For preconditioning, simple Dirichlet preconditioner FD = BSrrB
T will be used, where

Srr = diag
(
Ks
ee −Ks

ie
T (Ks

ii)
−1Ks

ie

)N
s=1

[4].

Enhanced penalty method [6] can be similarly computed as above. The remaining nodes

and the corner nodes are eliminated step by step, and the system of the Lagrangian variable

is obtained. However, the major difference is that the stiffness matrix of the remaining nodes

can not be solved in a local subdomain scale, but in a global scale.

The system matrix of the enhanced penalty method differs from (3.1) only in Krr. Let’s

notate it as Kη
rr, then

Kη
rr =

[
Kii Kie

KT
ie Kee

]
+

[
0 0

0 ηJ

]
and J is expressed as J = BTdiag(JB)B, where JB is a subdomain size matrix induced from

1
h

∫
Γij

φψds, ∀φ, ψ ∈ XC
h |Γij .

Note that Kη
rr is not a block diagonal matrix with respect to the subdomains, because the

added penalty term includes the relationship between the adjacent subdomains in J . The

final system matrix of the dual variable becomes

Fηλ :=
(
F ηrr + F ηrc(F

η
cc)
−1F ηrc

T
)
λ = dηr − F ηrc(F ηcc)−1dηc (3.3)

where

F ηrr = Br(Kη
rr)
−1BTr , F ηrc = Br(Kη

rr)
−1Krc, F ηcc = Kcc −KT

rc(K
η
rr)
−1Krc,

dr = BTr (Kη
rr)
−1fr, dc = fc −KT

rc(K
η
rr)
−1fr.
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As we mentioned above, Kη
rr is not block diagonal matrix with respect to subdomains and

must be solved globally with the parallel CG method [7]. Perhaps, we can still implement

each subdomain problems separately in a parallel machine and the data is transferred only

when we compute the J matrix. Similar to FETI-DP method, the dual system matrix Fη

and the course problem F ηcc can be solved iteratively with CG algorithms.

The convergence rate of FETI-DP method and enhanced penalty method can be com-

pared with the condition number bound of the system matrix solved in the CG algorithm.

For FETI-DP method (3.2), it can be estimated as κ(F ) ≤ C
(
1 + log H

h

)2
[5]. The bound

includes H/h and the algorithm is called numerically scalable with respect to H/h. It means

that the convergence is not deteriorated though we make the mesh size smaller if a certain

ratio between H and h is maintained. This is a desirable property for parallel algorithms,

because the mesh size h can be reduced without losing the convergence rate if the number

of processor allows to reduce the subdomain size H.

The remarkable property of the enhanced penalty method is that the condition number

bound of Fη in (3.3) is estimated as κ(Fη) ≤ 3
(
C
η + 1

)
, a constant bound independent of h

and H. Moreover, κ(Fη) ≤ 3 for large η [6]. This is called as a strongly scalable algorithm,

since the convergence is not affected regardless of dividing the mesh and subdomain size.

Yet, the enhanced penalty method has an inherent difficulty, which is the inner problem

(Kη
rr)
−1. The condition number bound of Kη

rr is estimated as

κ(Kη
rr) ≤ C

((
H

h

)2(
1 + log

H

h

)
(1 + η)

)
,

where η is included in the bound as a factor. Therefore, a preconditioner is designed for the

enhanced penalty method to remove the factor of η. The preconditioner can be defined as

M =

[
Kii 0

0 Kee

]
+

[
0 0

0 ηJ

]
,

then the condition number estimate becomes

κ(M−1Kη
rr) ≤ C

((
H

h

)(
1 + log

H

h

))
. See [6].
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3.2 Parallel Implementation

3.2.1 Hardware and software issues

Parallel computing refers to processing multiple instructions simultaneously to reduce the

wall clock computing time. Recently, the computing resource for parallel programs became

popular, from multi core computers to workstation clusters, so that parallel algorithms is

more valuable and widely used. In this section, we will briefly overview parallel computing

in perspective of hardware and software [8].

Parallel computers can be divided into two groups, shared memory system and dis-

tributed memory system, where the difference comes from the main memory access. The

shared memory system locates the main memory in a single address space to share with all

processers, while the distributed memory system has local address space for each processors,

either distributed logically or physically; see Figure 3.1. The distributed memory system

has no limit in number of processors and can be extended larger than the shared memory

system, but has a drawback of non-uniformity in memory access. Nowadays, the combina-

tion, called hybrid distributed-shared memory system, became popular, which is a cluster

of shared memory systems.

Another issue that we must inspect is the network of the memory system. Bus-based

architectures and switch-based architectures are some of the examples. Moreover, there

are variety of switch-based architecture respect to the structure of the switch, such as ring

type, cross bar type, etc. The data exchanging time can be totally different, so that the

communication scheme must carefully consider the memory structure of the system [9].

The parallel programming software can be classified according to the memory system.

For shared memory systems, OpenMP and POSIX Threads are the most well known ap-

plication program interface, which produce multiple threads. The program is initiated at a

single node, and then multi-threads are made when parallelization is available. The number

(a) (b)

Figure 3.1: Parallel computers with (a) Shared memory system, and (b) Distributed memory

system.
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of threads need to be known and the compiler automatically allocates the tasks. These

programs benefit from fast access to the outputs of other threads, since they are located

together in the shared memory space. However, more general approach for parallel programs

should be implemented in distributed memory system using the message passing between the

processors. The most well known library for distributed memory system is Message Passing

Interface (MPI). Communications occur through the network to transfer the data needed by

other processors. The number of processor is not limited and implementation is available in

both shared and distributed memory system. However, the tasks and communication must

be explicitly allocated by the programmer, which makes the implementation more compli-

cated. The library subroutines start with “MPI ” and they can be divided into one-to-one,

one-to-all, and all-to-all communications. One-to-one communication is the basic process of

sending and receiving the data. It is implemented with “MPI Sen” and “MPI Recv” func-

tions. The argument of the command includes the name of the sending node and receiving

node, data type, data size, and address, etc. One-to-all and all-to-all communications are

combinations of one-to-one subroutines. The procedure of the communication is implicitly

arranged in an optimized way.

3.2.2 Communication in enhanced penalty method

The dual iterative substructuring methods are efficient solvers for self adjoint second order

elliptic partial differential equations. Their apparent substructure can be easily implemented

in parallel computers and numerical scalability allows them to effectively solve partial dif-

ferential equations when parallel processors are available. The implementation of FETI-DP

method has been tested before and the numerical scalability is well shown in [4].

In this thesis, we are primarily interested in implementing enhanced penalty method on

parallel computers. As in FETI-DP method, the parallelism coming from the subdomains is

similar. However, the difference between FETI-DP method and enhanced penalty method

comes from the added penalty term measuring the jump across the subdomain edges. Besides

the additional computation, this term produces two major data transformation process

among the subdomains. Figure 3.2 illustrates them.

The first obvious communication arises in the matrix-vector product involving F ηrr in-

cluding the J matrix, where we measure the gap between the adjacent subdomains. Since

we distribute the subdomains into different processors, the edge values must be sent and

received across the neighboring subdomains. This process is one-to-one communication

since the data is transferred from one processor to another processor. For each subdomain,

(H/h− 1) node values per edge must be sent and received.

13



(a) (b)

Figure 3.2: Two major communication in the enhanced penalty method: (a) Send and

receive the edge variables, (b) Global inner product.

The second communication comes from the parallel CG method solving F ηrr. Unlike Frr
in FETI-DP method, F ηrr is solved with its dimension in a global scale. Therefore, while

working with the parallel CG algorithm, the inner product of the global vector lying on

the whole domain must be computed. This computation is implemented by calculating the

inner product of the local vector on their own domain, then gathering to sum all of the

values, and finally spreading the result again to every nodes. This process includes all-to-

all communication, where all of the processors participate. Although only single value is

sent and received, the whole family of the processors must collaborate at the same time to

proceed the algorithm.
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4. Numerical Tests

Now we present the numerical results of FETI-DP method and enhanced penalty method,

implemented on parallel computers. We verify the convergence and overall properties of the

methods, make discussions on optimizing the parallel performance of the enhanced penalty

method, and compare the parallel performance between two methods.

The simulation is done on IBM POWER5 Series p595, named “Gaia” maintained in

Korea Institute of Science and Technology Information (KISTI) Supercomputing Center.

Gaia, a hybrid shared-distributed memory system, consists of 10 nodes, where each node

contains 64 Power5 processors running at 2.3GHz. All server nodes are connected by an

IBM high performance federation switch network (HPS) and the Enhanced Distributed

Switch network is imbedded within the nodes. Table 4.1 describes the capability of Gaia

system. Gaia uses Parallel Environment (PE) 4.3 for message passing library, which is an

IBM optimized library based on MPI. In addition, Engineering Scientific Subroutine Library

(ESSL) 3.3 and Parallel ESSL (PESSL) 3.3 are installed as a basic linear algebra library, also

IBM optimized library of the general versions such as Basic Linear Algebra Subprograms

(BLAS), Linear Algebra Package (LAPACK), and Basic Linear Algebra Communication

Subprograms (BLACS) [10].

Table 4.1: Computing environment of Gaia system

System Nodes
CPU

Total

number
Processor

Rpeak

(GFlops)

Memory

(GB)

p595 10
640

(64/node)

POWER 5+

(2.3GHz)

5,888

(588.8/node)
2,816
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4.1 Computation and numerical scalability

The Poisson problem with homogeneous Dirichlet boundary condition (2.1) is tested on the

square domain Ω = [0, 1]× [0, 1] with an exact solution

u(x, y) = y(1− y) sin(πx).

The domain Ω is divided into square shaped subdomains and uniform triangular element

is chosen. As the usual notation, h stands for the mesh size and H is the subdomain size.

Hence, the subdomain number becomes N = 1/H × 1/H and each subdomain contains

2×H/h×H/h elements. We tested our methods for N = 4× 4, 8× 8, 16× 16 and various

levels of H/h.

The parameter in the penalty term is chosen as η = 2 and η = 106. η = 2 is estimated

as an optimal value considering the condition number of Fη in [6] and η = 106 is taken

to examine the numerical stability of the enhanced penalty method. The preconditioner is

used only for the η = 106 case.

The convergence of the CG method is investigated by the relative error with the stopping

criterion ‖rk‖/‖r0‖ < 10−8, where rk is the residual error of the k-th iteration of the CG

algorithm.

Table 4.2 shows the convergence behavior of FETI-DP method and enhanced penalty

method with η = 2 and η = 106 for various levels of H and h. The relative error is measured

with L2 norm, i.e., ‖u−uh‖2
‖u‖2 . We observe that the error is consistent for certain level of h in

different subdomain numbers and that the enhanced penalty method converges stably for

large η. Moreover, O(h2) convergence is verified.

Table 4.3 compares the iteration and condition number between FETI-DP method and

the enhanced penalty method. Numerical scalability is observed in both methods, since

the condition number κ(F ) and κ(Fη) and the iteration counts are maintained for certain

level of H/h. Moreover, the strong scalability of the enhanced penalty method is shown,

since the iteration number is bounded regardless of H and h, while in FETI-DP method,

it increases with respect to H/h. The condition number estimation that κ(Fη) is bounded

by 3 is also verified. The strong scalability of the enhanced penalty method seems to be

a superior property to FETI-DP method, since the outer iteration number is always kept

constant. However, the enhanced penalty method has more expensive computations in the

inner iteration than FETI-DP method. Also, it is clear that more communication time will

be added to the overall wall clock time. Therefore, the enhanced penalty method must be

implemented carefully in perspective of computation and communication.
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Table 4.2: Convergence behavior of FETI-DP (η = 0) and the enhanced penalty method

(η = 2, 106) for various levels of H and h.

N H
h h

η = 0

error

η = 2

error ratio

η = 106

error ratio

4× 4

16

32

64

128

256

1/64

1/128

1/256

1/512

1/1024

2.0183e-4

5.0466e-5

1.2616e-5

3.1529e-6

7.9021e-7

2.0183e-4 -

5.0468e-5 0.250

1.2618e-5 0.250

3.1544e-6 0.250

7.8856e-7 0.250

2.0183e-4 -

5.0466e-5 0.250

1.2615e-5 0.250

3.1531e-6 0.250

7.8702e-7 0.250

8× 8

16

32

64

128

1/128

1/256

1/512

1/1024

5.0462e-5

1.2615e-5

3.1607e-6

7.8727e-7

5.0465e-5 -

1.2617e-5 0.250

3.1535e-6 0.250

7.8959e-7 0.250

5.0463e-5 -

1.2614e-5 0.250

3.1485e-6 0.250

7.8825e-7 0.250

16× 16
16

32

64

1/256

1/512

1/1024

1.2608e-5

3.1489e-6

8.1495e-7

1.2618e-5 -

3.1573e-6 0.250

7.9133e-7 0.250

1.2611e-5 -

3.1412e-6 0.249

7.7189e-7 0.246

Table 4.3: Comparison of condition number and iteration counts between FETI-DP (η = 0)

and the enhanced penalty method (η = 2, 106).

N H
h

η = 0

# iter. κ(FD−1F )

η = 2

# iter. κ(Fη)

η = 106

# iter. κ(Fη)

4× 4

16

32

64

128

8 2.9528

10 3.8135

11 4.8437

11 5.9794

5 1.1053

5 1.1050

5 1.1035

5 1.1014

13 2.9243

14 2.9771

14 2.9733

13 2.9707

8× 8

16

32

64

128

12 3.2500

14 4.2369

16 5.3240

17 6.6656

5 1.1002

5 1.1024

5 1.1016

5 1.1004

12 2.9245

14 2.9792

14 2.9733

15 2.9707
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(a) (b)

Figure 4.1: Graph of wall clock time versus H/h in (a) N = 4×4, (b) N = 8×8 subdomains.

4.2 Parallel Performance and Optimization

Finally, the wall clock time of the FETI-DP and enhanced penalty method in optimal η = 2,

implemented on Gaia system, is presented in Table 4.4 and Figure 4.1. FETI-DP method is

more efficient than the enhanced penalty method when the mesh size h is large or when the

degree of freedom on each subdomain H/h is small. In spite of the less iteration number, the

enhanced penalty method suffers from more computation per iteration and especially the

communication time. As we can see in Table 4.5, data communication time dominates the

wall clock time when the size of the subdomain problem is small. However, the enhanced

penalty method becomes more efficient as the size of the subdomain problem increases. The

communication time becomes relatively small and the method is rewarded from the fast

convergence, i.e., small iteration number. Note that in our simulation, the enhanced penalty

method becomes more favorable than FETI-DP method when the scalability constant H/h

is greater than 128.

Here we note some remark on the procedure of optimizing the enhanced penalty method,

which can be applied to any general parallel program.

Remark 4.2.1 Optimization of the serial code

Apparently, the parallel program must be first optimized in the sense of serial code. Opti-

mizing the loop operation and memory access pattern is critical factors.

Particularly, matrix-vector product requires repeated and nested loops. These simple
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Table 4.4: Parallel performance in wall clock time (second) of FETI-DP (η = 0) and the

enhanced penalty method (η = 2).

N H
h h

η = 0

# iter. time(sec)

η = 2

# iter. time(sec)

4× 4

16

32

64

128

256

1/64

1/128

1/256

1/512

1/1024

8 0.0319

10 0.1856

11 1.5280

11 17.0487

12 165.9410

5 0.3016

5 0.7448

5 2.4389

5 16.1737

5 123.1380

8× 8

16

32

64

128

256

1/128

1/256

1/512

1/1024

1/2048

12 0.0918

14 0.4662

16 3.6670

17 45.0788

17 400.7010

5 1.1994

5 2.6973

5 7.9586

5 44.5052

5 349.5920

linear algebra calculations can be enhanced by using the linear algebra libraries, such as

BLAS and BLACS. LAPACK can be used for more complicated calculations. In our test,

routines that include vector addition and matrix-vector product are implemented by ESSL,

IBM’s linear algebra library based on BLAS supporting the PowerPC architecture under

AIX and Linux.

We had prior test for the efficiency of the library. For example, the inner product was

one of the most frequently used routines. The time consumed for calculating the inner

product increased linearly in the usual code with loop operations. In the other hand, the

time increased in log likelihood scale with a slope less than 0.65 in the optimized code using

the library.

Table 4.6 shows the reduced wall clock time in percentage, after optimizing the linear

algebra calculations with ESSL. The enhanced penalty method has reduced its wall clock

time by 5 ∼ 10% for every level of H/h. However, the performance of FETI-DP method

had almost no difference. We can observe that, to compensate the time required to access

the library, the dimension of the problem and the frequency of library usage must exceed

certain amount.

Remark 4.2.2 Load balancing and synchronization
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Table 4.5: Comparing wall clock time (WCT(sec)) and communication time (sec) and its

percentage of FETI-DP (η = 0) and enhanced penalty method (η = 2).

N H
h h

η = 0

WCT Communication

η = 2

WCT Communication

4× 4

32

64

128

256

1/128

1/256

1/512

1/1024

0.201 0.008 3.98%

1.542 0.021 1.36%

17.518 0.096 0.55%

165.608 1.239 0.75%

0.817 0.526 64.38%

2.574 0.931 36.17%

16.732 2.345 14.01%

125.146 5.703 4.56%

8× 8

32

64

128

256

1/256

1/512

1/1024

1/2048

0.509 0.033 6.48%

3.743 0.053 1.42%

44.993 0.802 1.78%

403.251 8.068 2.00%

3.220 2.424 75.28%

8.379 3.904 46.59%

47.752 9.209 19.29%

358.331 28.618 7.99%

Synchronization means coordinating the processors to operate at the same time. For in-

stance, the whole system must be synchronized when certain value calculated from all of

the processors is needed to every processor. If the task is not equally distributed, which we

call load balancing, some processors might be waiting without doing anything whenever the

program needs to be synchronized. Therefore, in the parallel optimization, it is crucial to

allocate the jobs fairly.

To avoid the waiting time, nonblocking communication can be used instead of blocking

communication. A processor can either do calculation or communication at a single time.

So, basically the blocking process stops the other calculation until the communication is

properly finished. The processor waits after sending the data, until the success message

is received from the counterpart. However, nonblocking communication resolves this by

sending the data to the buffer, instead of directly to the receiving processor. This scheme

has pros and cons. The sending processor can calculate other jobs after sending the data,

but it must go back to the buffer afterwards to check if the data transfer has been completed

properly. Therefore, frequently used nonblocking process can be a burden. While “MPI

Send” and “MPI Recv” implements blocking communication, “MPI Isend” and “MPI

Irecv” performs nonblocking communication. Furthermore, the IBM library PE 4.3 includes

nonblocking communications for all-to-all subroutines, whereas the generally released MPI

library does not.

In addition, even though we optimize the load balancing and communication, disparity
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Table 4.6: Reduced wall clock time in percentage after optimizing the linear algebra routines

in N = 4× 4 subdomains.

H/h

Method 16 32 64 128

FETI-DP 0.18% 0.06% -0.12% -0.55%

penalty(η = 2) -0.61% -5.59% -7.01% -9.54%

Table 4.7: Profiling the communication time (comm.WCT) of enhanced penalty method

(η = 2) : percentage of the two major communication, global inner product (MPI Allreduce)

and sending and receiving at the edge nodes (MPI Send, MPI Recv).

N H
h h

Comm.

WCT

MPI Allreduce

WCT percent

MPI Send&Recv

WCT percent

4× 4

16

32

64

128

1/64

1/128

1/256

1/512

0.236

0.488

0.980

2.598

0.205 86.96%

0.423 86.72%

0.776 79.15%

1.656 63.73%

0.031 13.04%

0.065 13.28%

0.204 20.85%

0.637 24.53%

occurs from the different performance of the physical computing resources. Therefore, the

synchronizing process, especially the synchronization of the whole system, must be avoided

as far as possible. One solution is to calculate the value on its own processor if it is possible.

Or else, gathering the synchronization step together can reduce the frequent potential waiting

time.

Alternatively, optimizing the serial code can be another solution to enhance the load

balancing, since the difference between the processors will be reduced together with the

computing time of each process.

Enhanced penalty method is nearly optimized in perspective of load balancing. Because

the domain is divided into subdomains having the same size, the amount of calculation is

almost identical. However, we should look into the two major communications mentioned

in the section 3.2.2 carefully, since the physical circumstance can be always different. The

profiling results are shown in Table 4.7.

The first communication to calculate the edge difference matrix J is one-to-one com-

munication. This appears in each iteration of the CG algorithm solving F ηrr. Instead of
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(a)

(b) (c)

Figure 4.2: Algorithm for global inner product (a) Butterfly Algorithm, (b) Subdomain

structure, and (c) Master Node.

using “MPI Send” and “MPI Recv” right before we calculate J , nonblocking subroutines

“MPI Isend” and “MPI Irecv” can be commanded at the beginning of each iteration.

While calculating Frr and other terms, the uneven performance can be regulated by the

unrestricted starting time of the communication. However, the performance was improved

less than 1%. Moreover, the wall clock time rather increased when H/h ≤ 32.

Small amount of improvement was expected since the communication cost coming from

the “MPI Send” and “MPI Recv” routine accounts for little proportion out of the total

wall clock time. However, the result indicates that nonblocking communication must be

considered with more caution. Checking the success of nonblocking routine afterwards turns

out to be a burden in some cases where load balancing is almost optimized.

The second communication calculating the global inner product occurs twice per iter-

ation. It is implemented by “MPI Allreduce” routine to add the values from the whole

processor group. “MPI Iallreduce” from PE 4.0 was applied, but the result was far worse.

The necessity of checking right after the communication in each iteration has diminished

the efficiency.

Remark 4.2.3 Communication routine - Butterfly algorithm
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The profiling results in Table 4.7 show that all-to-all communication costs much more than

one-to-one communication. The increment of cost depends on the number of processors.

The communications in the MPI subroutines are optimized in its own way. However, we

need to check if such communication procedure is proper to our network system [9].

To implement the global inner product, we need to add the values from all processors

and their ordering can be implemented in various ways. “MPI Allreduce” arranges the

ordering as Figure 4.2(a), what we call the butterfly algorithm. The cost is log(N) times the

cost for “MPI send”. However, if the structure of the network is not uniform, the optimal

algorithm should be designed differently. Therefore, we tested several orderings implemented

by other MPI routines. The first scheme is to imitate the subdomain structure and send

the value to the neighbor subdomain as in the usual sending and receiving the edge routine.

The second scheme is to send the value to a single master node, then broadcast the added

result to the other nodes. See Figure 4.2(b) and 4.2(c). The simulation result showed that

the other schemes lowered the efficiency. The wall clock time increased more than 30% to

almost 100%. Therefore, we concluded that the butterfly algorithm is the optimized routine

to implement all-to-all communications similar to “MPI Allreduce” in Gaia system.

Enhanced penalty method is optimized in perspective of the serial code, load balanc-

ing, synchronizing, and communication routine. After optimization, the enhanced penalty

method performed better than FETI-DP method when the subdomain problem size H/h ≥
128. However, Table 4.5 shows that communicating time in the enhanced penalty method

still consists of large portion among the wall clock time. This reveals that the performance

of the enhanced penalty method has a potential to be improved along with the hardware

resource.
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5. Conclusions

This paper discussed the parallel implementation of the dual iterative subsructuring meth-

ods, particularly FETI-DP method and enhanced penalty method. We optimized the en-

hanced penalty method and compared its performance to FETI-DP method. The perfor-

mance was analyzed in two perspectives, computation and communication, and the methods

turn out to have their own strength in these two aspects, respectively.

With respect to the computation, the enhanced penalty method is superior, since the

strengthened continuity constraint accelerates the convergence. Strong scalability of the

enhanced penalty method results in fewer iteration number, i.e., less computation than

FETI-DP method. But the enhanced penalty method compensates its fast convergence with

added communication cost. Enhanced penalty algorithm contains two major communicating

process and their cost is expensive. This offsets the saved wall clock time and makes FETI-

DP method more effective if the subdomain problem size is small. However, as H/h becomes

larger, the convergence of FETI-DP method diminishes and the enhanced penalty method

reveals its advantage over FETI-DP method.

In conclusion, FETI-DP method having less communication is superior than the en-

hanced penalty method when H/h is small. On the other hand, the enhanced penalty

method becomes more efficient when H/h is beyond a certain level, because the reduced

computation compensates the additional communication cost. Considering the results, the

enhanced penalty method can be useful when we are solving a large problem in a limited

number of parallel processors, while FETI-DP is preferable when we have enough number

of processor nodes to execute.

In case of our Poisson test problem in the Gaia system, the enhanced penalty method

becomes more efficient than FETI-DP method when H/h ≥ 128 for 4 × 4 and 8 × 8 sub-

domains. The decision between FETI-DP and the enhanced penalty method must be made

carefully, considering the number of processors, computing power, and network performance

of the parallel resource.

The performance of the enhanced penalty method can be improved with advanced hard-

ware resources. Since the prevailing communication is calculating the sum over all pro-

cessors, faster network and cache memory for these routines can make enhanced penalty

method more promising.

After calculation of the global inner product is improved, the penalty term can be mod-
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ified by sending and receiving less values without disturbing the convergence so large. For

example, sending only the even nodes among the edge or only the average value can be

considered.

Further more, FETI-DP method and enhanced penalty method in three dimension must

be deliberately optimized in parallel circumstance. It is well known that FETI-DP method

suffers more severely from diminished convergence in three dimensional case and the en-

hanced penalty method has more communication. Since the data transfers not only on the

edge, but also on the surface, optimizing those routines will be an critical issue for the

enhanced penalty method.
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