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Abstract of “High-Dimensional Response-Excitation PDF Methods for Uncertainty
Quantification and Stochastic Modeling”, by Heyrim Cho, Ph.D., Brown University,
May 2015

The probability density approach based on the response-excitation theory is devel-

oped for stochastic simulations of non-Markovian systems. This approach provides

the complete probabilistic configuration of the solution that enables a comprehensive

study of stochastic systems. By using functional integral methods we determine a

computable evolution equation for the joint response-excitation probability density

function (REPDF) of stochastic dynamical systems and stochastic partial differential

equations driven by colored noise. We establish its connection to the classical re-

sponse approach and its agreement to the Dostupov-Pugachev equations (Dostupov,

1957) and the Malakhov-Saichev equations (Gurbatov et al, 1991). An efficient al-

gorithm has been proposed by using adaptive discontinuous Galerkin method and

probabilistic collocation method combined with sparse grid. For high-dimensional

REPDF systems, we develop the algorithms concerning high-dimensional numerical

approximations, namely, separated series expansion and the ANOVA approximation.

These methods reduce the computational cost in high-dimensions to several low-

dimensional operations. Alternatively, reduced order PDF equations are obtained

by using the Mori-Zwanzig framework and conditional moment closures, which es-

tablish a preliminary work of goal-oriented PDF equations. Finally, we demonstrate

the effectiveness of the proposed numerical methods to various stochastic systems

including the tumor cell growth model, chaotic nonlinear oscillators, advection re-

action equation, and Burgers equation. The second part of the thesis focuses on

simulations of multi-scale stochastic systems. The Karhunen-Loève expansion is ex-

tended to characterize multiple correlated random processes and local decomposed

random fields. We then propose interface conditions based on conditional moments

and PDE-constrained optimization that preserve the global statistics while propa-

gating uncertainty. Finally, the decomposition algorithm is recast to couple distinct



PDF models including the REPDF system.
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Chapter 1

Introduction

The relevance of uncertainty in science and engineering has been recognized in

many different applications including stochastic resonance in sensory neurons [137],

chemical excitable systems [7, 228], structural dynamics [18, 111, 171], tumoral cell

growth [58,205,223], spin relaxation in magnetic phenomena [4], and optical instabil-

ities [93, 229]. Accordingly, stochastic differential equations modeling such systems

and simulations of corresponding probabilistic solutions have received considerable

interest. Moreover, advances in computing power and algorithm have increased the

impact of computer simulations for our society, which makes uncertainty quantifi-

cation more essential. Without a valid quantification of the variation between the

simulated prediction and the true value, benefit from the computational model will

remain limited.

The overall framework of uncertainty quantification entails quantifying the source

of uncertainty and propagating uncertainty through the computational model. The

source of uncertainty can arise from insufficient information about the true value,

such as rough estimates of the parameters, unknown boundary and initial conditions,

or imprecise geometry. The random nature of the physical system or approximative

constitutive laws can induce uncertainty as well. Various methods have been de-
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veloped to characterize randomness through random variables and random fields,

for instance, Karhunen-Loève (KL) expansion [88,141], kriging [32,151], polynomial

chaos [71,213], and kernel density estimation [22]. Once the probabilistic configura-

tions of random inputs and excitations are prescribed, the propagation of uncertainty

associated with the computational system can be computed according to different

stochastic methods.

1.1 Review of computational probabilistic meth-

ods

Computational methods for stochastic simulations can be roughly classified as sta-

tistical methods and non-statistical methods. Well-known methods for the former

include Monte-Carlo simulations, Bayesian methods, and importance sampling. The

later includes stochastic spectral methods [71,213,214], high-dimensional model rep-

resentations [110,155], stochastic biorthogonal expansions [190,191,198] and proper

generalized decompositions [33, 133]. Here, we briefly review some of the methods,

focusing on the stochastic spectral method and probability density approach.

1.1.1 Stochastic spectral methods

Stochastic spectral methods [6, 208, 212] employ spectral elements for the solution

with respect to the random inputs by using Askey-type orthogonal polynomial func-

tions. They include generalized polynomial chaos method (gPC) [71, 213], proba-

bilistic collocation method (PCM) [130,212], multi-element probabilistic collocation

method (MEPCM) [60], and many other variants. Based on the input and solu-

tion that are in the form of finite order spectral expansion, the method employs

standard projection approach based on the Galerkin or collocation basis, denoted

as gPC or PCM, respectively. As a result, the problem is reconstructed as a deter-
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ministic system regarding the expansion coefficients and the dimensionality depends

on the order of the approximating polynomials as well as the number of random

parameters. The gPC and PCM have been extended to overcome several computa-

tional limits including low regularity and the curse of dimensionality. By using hp

adaptive approach, multi-element gPC (megPC) [199, 203] and multi-element PCM

(mePCM) [60] resolve the issue of low stochastic regularity and demonstrate their ef-

fectiveness on solutions that have discontinuous dependency on random parameters.

However when high-dimensionality occurs, the usual tensor product often makes

the computational cost intractable, due to its exponential growth with respect to

the dimensions. Thus, various methods have been developed adopting sparse grid

(PCM-sparse) [130,212] and ANOVA approximation (PCM-ANOVA) [11,61] to the

spectral methods. Moreover, anisotropic adaptive approaches [70,204,220] that seeks

effective dimensions generalize the PCM-sparse and PCM-ANOVA methods avail-

able to even higher dimensions.

Compared to the Monte-Carlo approach, the stochastic spectral methods can ef-

ficiently calculate the moment statistics up to the order of truncation for solutions

to stochastic ODE and PDE systems with comparatively less computational cost.

However, we notice that there exists an infinite number of probability density asso-

ciated with a fixed set of moments truncated at certain level. Thus, in the following

section, we review stochastic models that directly compute the probability density

functions (PDFs).

1.1.2 Probability density approach

The main advantage of probability density approach is that it contains the full statis-

tics of the solution. Considering a stochastic system that reveals complicated dynam-

ics such as bifurcation, metastability, heavy-tail distribution, or rare events, methods

based on sampling or moment statistics often require extremely expensive compu-
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Figure 1.1: Comparison between the sample phase space (first row) and the joint
PDF of the position and the momentum of a randomly forced nonlinear pendulum
(second row) [for a detailed description of this problem see section 3.2.1]. The PDF
solution is obtained by using the proposed adaptive discontinuous Galerkin method.
It is seen that the position of the sample particles are in very good agreement with
the computed PDF at different times.

tational cost or result in misleading conclusions due to their finite order truncation.

However, the PDF provides the complete probabilistic description of the phenomena,

which enables an accurate and thorough investigation for such complex systems.

In addition, partial differential equations involving PDFs arise naturally in many

different areas of mathematical physics, so called kinetic equations. For example,

they play an important role in modeling rarefied gas dynamics [26, 27], semicon-

ductors [119], stochastic dynamical systems [117, 127, 128, 174], structural dynam-

ics [18,111,171], stochastic partial differential equations (PDEs) [36,103,118,194,195],

turbulence [64, 124, 125, 147], system biology [58, 137, 223], etc. Perhaps the most

well-known kinetic equation is the Fokker-Planck equation [127,161,179], which de-

scribes the evolution of the probability density function of Langevin-type dynamical

systems subject to Gaussian white noise. Another well-known example of kinetic

equation is the Boltzmann equation [201] describing a thermodynamic system in-

volving a large number of interacting particles [27]. Other examples that may not be

widely known are the Dostupov-Pugachev equations [49, 111, 174, 196], the reduced-
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Fokker-Planck [127, 161]
∂p

∂t
+

n∑

i=1

∂

∂zi
(Gip) =

1

2

n∑

i,j=1

∂2

∂zi∂zj
(bijp)

Boltzmann [26, 45]
∂p

∂t
+

3∑

k=1

vk
∂p

∂zk
= H(p, p)

Liouville [49, 103, 111, 174]
∂p

∂t
+

n∑

k=1

∂

∂zk
(Gkp) = 0

Malakhov-Saichev [118, 194]
∂p

∂t
+

∂

∂z

(
3∑

k=1

Gk

∫ z

−∞

∂p

∂xk
dz′

)
= −∂(Hp)

∂z

Mori-Zwanzig [195, 230]
∂p1
∂t

= PLp1 + PLetQLp2(0) + PL

∫ t

0

e(t−s)QLQLp1ds

Table 1.1: Examples of kinetic equations arising in different areas of mathematical
physics.

order Nakajima-Zwanzig-Mori equations [195, 230], and the Malakhov-Saichev PDF

equations [118, 194] (see Table 1.1).

An interesting new approach for the complete probabilistic description of a

stochastic system driven by colored noise was recently proposed by Sapsis [168].

The key idea - inspired by the work of Beran [8] - was to perform analysis on the

extended probability space consisting of the joint response-excitation statistics. In

particular, the Hopf equation [103, 109, 164] governing the dynamics of the joint

response-excitation characteristic functional of the system was reduced to a differen-

tial constraint involving the one-point response-excitation probability density func-

tion. This differential constraint was then supplemented with additional marginal

compatibility conditions and other constitutive relations in order to obtain a closed

system of equations. This led to the formulation of a new theory, which was shown

to be consistent with standard stochastic approaches such as moment equations or

Fokker-Planck equations. In this way, the closure problem arising in the standard

response approach for non-Markovian systems [127, 178] was apparently overcome.
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The response-excitation theory has been developed in [196] by using functional in-

tegral techniques that simplifies considerably the derivation of the differential con-

straints given in [168]. Moreover, this theory also generalizes classical PDF ap-

proaches for systems having smooth nonlinearities of non-polynomial type. In addi-

tion, this framework has been extended in the context of first-order nonlinear scalar

PDEs [194] allowing efficient mathematical derivations compared to those ones based

on the more rigorous Hopf characteristic functional approach [103, 109, 164].

1.1.3 Difficulties in probability density approach

In spite of their potential for the comprehensive understanding of stochastic systems,

computing the numerical solution to a PDF equation is a very challenging task that

involves several distinct problems:

1. High-dimensionality: Kinetic equations describing realistic physical systems

usually involve many phase variables. For example, the Fokker-Planck equa-

tion of classical statistical mechanics yields a joint probability density function

in n phase variables, where n is the dimension of the underlying stochastic

dynamical system, plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and

time, which could be hardly accessible by conventional numerical methods.

For example, the Liouville equation is a hyperbolic conservation law whose

solution is purely advected (with no diffusion) by the underlying system’s flow

map. This can easily yield mixing, fractal attractors, and all sort of complex

dynamics.

3. Lack of regularity: The solution to a kinetic equation is, in general, a distri-

bution [96]. For example, it could be a multivariate Dirac delta function, a

function with shock-type discontinuities [36], or even a fractal object (see Fig-
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ure 1 in [195]). From a numerical viewpoint, resolving such distributions is not

trivial, although in some cases it can be done by taking integral transformations

or projections [221].

4. Conservation properties: There are several properties of the solution to a ki-

netic equation that must be conserved in time. The most obvious one is mass,

i.e., the solution to a kinetic equation always integrates to one. Another prop-

erty that must be preserved is the positivity of the joint PDF, and the fact

that a partial marginalization still yields a PDF.

5. Long-term integration: The flow map defined by nonlinear dynamical systems

can yield large deformations, stretching and folding of the phase space. As

a consequence, numerical schemes for kinetic equations associated with such

systems will generally loose accuracy in time. This is known as long-term inte-

gration problem and it can be eventually mitigated by using adaptive methods.

Over the years, many different techniques have been proposed to address these

issues, with the most efficient ones being problem-dependent. For example, a widely

used method in statistical fluid mechanics is the particle/mesh method [129,146–148],

which is based directly on stochastic Lagrangian models. Other methods make use

of stochastic fields [188] or direct quadrature of moments [63]. In the case of the

Boltzmann equation, there is a very rich literature. Both probabilistic approaches

such as direct simulation Monte Carlo (DSMC) [12, 162], as well as deterministic

methods, e.g., discontinuous Galerkin (DG) and spectral methods [31,59], have been

proposed to compute the solution. Probabilistic methods such as DSMC are exten-

sively used because of their very low computational cost compared to finite-volumes,

finite-differences or spectral methods, especially in the multi-dimensional case. How-

ever, DSMC usually yields poorly accurate and fluctuating solutions, which need to

be post-processed appropriately, for example through variance reduction techniques.
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We refer to Dimarco and Pareschi [45] for a recent review.

1.2 Thesis Outline

The objective of this thesis is to introduce stochastic simulation based on the prob-

ability density approach, particularly using the response-excitation probability den-

sity functions (REPDFs). The first part of the thesis focuses on numerical methods

developed for the REPDF evolution equation as well as classical response PDF equa-

tions. The range of applicability of the proposed numerical approaches is sketched

in Figure 1.2 as a function of the number of phase variables n and the number of

parameters m appearing in the kinetic equation. The second part of the thesis is

devoted to stochastic domain decomposition methods that eventually yields coupling

algorithms between distinct probabilistic computational models including probability

density systems.

In chapter 2, we introduce the theory underlying the REPDF that relies on

functional integral approach. We determine the set of equations arising from the

response-excitation theory for a simple first-order nonlinear ordinary differential

equation and discuss the question of computability and well-posedness of the bound-

ary value problem for the joint response-excitation density equation. In addition,

the connection between the response-excitation approach and the classical response

approach is established. Then, we derive computable response-excitation probabil-

ity density evolution equations of ordinary differential equations involving random

parameters as well as first order non-linear and quasi-linear partial differential equa-

tions. Finally, we close this chapter with a simple numerical application of this

approach to the tumor cell growth model [223].

In chapter 3, we develop an efficient numerical method to compute the solution

of the joint REPDF equation corresponding to an arbitrary nonlinear stochastic dy-
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namical system. This allows us to address the question of whether the joint REPDF

approach can provide an effective computational tool to simulate the effects of col-

ored random noise in physical systems. The numerical challenges associated with

this task are two-fold; first the dimensionality, which may be eventually handled

by using closures or techniques for high-dimensional systems; and second, the so-

lution which may be discontinuous and compactly supported over disjoint domains

(see Figure 1.1). This obviously requires the development of appropriate numerical

techniques, and we propose a method based on the adaptive discontinuous Galerkin

method [38]. In order to improve the computational efficiency, we have also devel-

oped non-conforming adaptive strategies based on two different adaptive criteria: (1)

a combination of local variance and boundary flux difference; and (2) a concentration

of sample points in phase space. Afterwards, the adaptive discontinuous Galerkin

method is combined with the probabilistic collocation method that is devised for the

excitation space. We also employ the sparse grid collocation method to overcome

the high-dimensionality occurring in the excitation space. The effectiveness of this

algorithm is demonstrated in several nonlinear stochastic dynamical systems subject

to colored noise.

In chapter 4, we address the high-dimensionality of REPDF equation by using

numerical approximation for high-dimensional functions, namely, separated series

expansion (SSE) methods and ANOVA approximations. The key idea of separated

representations is to approximate a multi-dimensional function in terms of series

involving products of one-dimensional functions [33, 108, 131, 133]. As we will see,

this allows us to reduce the problem of computing the solution to high-dimensional

kinetic equations to a sequence of one-dimensional problems that can be solved re-

cursively and in parallel by using alternating direction algorithms, e.g., alternating

least squares (ALS). The second approach we consider is based on ANOVA approx-

imation methods [25, 68, 110, 227]. The basic idea is to represent multivariate PDFs
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Figure 1.2: Range of applicability of different numerical methods for solving ki-
netic equations as a function of the number of phase variables n and the number
parameters m appearing in the equation. Shown are: Separated series expansion
methods (SSE - section 4.1.1), conditional moment closures (CMC - section 5.2),
high-dimensional model representations (ANOVA - section 4.1.2), adaptive discon-
tinuous Galerkin methods (DG - section 3.1.1) with sparse grids (SG) or tensor
product probabilistic collocation (PCM - section 3.1.2) in the parameter space, di-
rect simulation Monte Carlo (DSMC). The proposed new classes of algorithms are
enclosed with dashed lines.

in terms of series expansions involving functions with a smaller number of variables.

For example, a second-order ANOVA approximation of a multivariate PDF in N

variables is a series involving functions of at most two variables. This allows us

to reduce the problem of computing high-dimensional PDF solutions to a sequence

of problems involving low-dimensional PDFs. These two approaches are compared

in terms of accuracy and computational cost, accompanied by a numerical applica-

tion to kinetic equations arising in stochastic partial differential equations (random

advection problems).

In chapter 5, we propose reduced-order PDF equations to overcome high-

dimensionality in kinetic systems. In other words, we employ dimension reduction

techniques to model the probability density of the quantities of interest in high-

dimensional stochastic systems. Those of our interest are often only a few phase

variables or a low-dimensional phase space function. The first idea stems from tech-

niques of irreversible statistical mechanics, in particular the Nakajima-Zwanzig-Mori

formalism (see, e.g., [23, 28, 56, 230]). The Mori-Zwanzig (MZ) projection operator
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framework is employed to derive reduced-order PDF equations based on operator

cumulant resummation. In particular, the MZ formalism for the joint REPDF is ap-

plied to study the stochastic Burgers equation. We perform stochastic simulations of

the Burgers problem and study random flows induced by high-dimensional random

initial conditions and random forcing terms. We then discuss the statistical prop-

erties of the solution, including the shock development and clustering. The other

approach addresses the high-dimensionality mainly in the phase space by conditional

moment closure approximation. This method relies on deriving a hierarchy of coupled

PDF equations for each given stochastic dynamical system. Such hierarchy resem-

bles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of kinetic gas

theory [126]. The proposed conditional moment closures are applied to kinetic equa-

tions arising in nonlinear stochastic dynamical system such as Kraichnan-Orszag and

Lorenz-96 systems. In addition, this framework provides an approximated system of

the probability density evolution for higher-order PDEs exceeding second-order, that

cannot be written explicitly in a standard differential equation due to its nonlocal

interaction.

The second part starts from chapter 6. Here, we present extensions of the KL ex-

pansion to characterize uncertainty with nontrivial correlated statistics. At first, we

present two methods that extend the classical KL expansion to multi-correlated non-

stationary stochastic processes. We call the first method as multiple uncorrelated KL

(muKL) expansion based on the spectral decomposition of a suitable assembled pro-

cess, and it yields series expansions in terms an identical set of uncorrelated random

variables. The second approach, multiple correlated (mcKL) expansion method,

relies on expansions in terms of correlated sets of random variables. The cross-

covariance structure the processes is imposed by setting the cross-correlation between

such sets of random variables appropriately. Both these methods are straightforward

to use and can be readily employed in stochastic simulations based on Monte-Carlo,
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polynomial chaos [71, 213] or probabilistic collocation [61]. In addition, we also in-

troduce a localized KL expansion of random processes and fields for the purpose of

domain decomposition. By using an alternative overlapping decomposition corre-

sponding to the random space, this expansion preserves second-order global statisti-

cal properties, i.e., the two-point correlation function across different domains. The

convergence result of the local expansion method is provided as well. Applications

of this expansion are presented in the following chapters.

In chapter 7, we propose new algorithms to propagate uncertainty across scales

in nonlinear stochastic dynamical systems by using domain decomposition methods.

This technique has been used extensively in deterministic problems [98,173] to speed

up computations, and only recently it was considered in the context of stochastic

PDEs [53, 54, 169]. Such extensions, however, are based on stochastic linear alge-

bra and do not provide new insights in the most appropriate coupling conditions

for interacting partially correlated stochastic simulations. Most of the work that has

been done so far addresses this problem by imposing artificial boundary conditions,

e.g., based on physical intuition, or assumes statistical independence between the

solution in different sub-domains [112] Here, we develop a new general framework

for multi-scale propagation of uncertainty in heterogeneous stochastic systems based

on multi-level domain decomposition methods. The key idea relies on new types

of interface conditions combined with reduced-order local representations and gen-

eralized Schwarz methods. In this way, the stochastic problem can be reduced to

a sequence of problems of smaller stochastic dimension, while properly propagating

uncertainty with interface conditions that preserve global statistical properties. In

addition, this methodology is applied to domain decomposition for PDF approach.

The motivation of domain decomposition to reduce the computational cost when the

characteristic of the randomness across the domain is vastly changing appeals to the

PDF systems as well. According to the characteristic of the random excitation, there
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exist a range of distinct PDF models that is known to be appropriate (for instance,

see Fig. 7.11). Thus, we develop coupling algorithms for PDF systems based on the

interface methods presented in this chapter.



Part I

Response-Excitation PDF

approach

14



Chapter 2

Derivation of REPDF equation

In this chapter, we introduce the theory underlying the REPDF and derive the

evolution equation by using the functional integral approach. In section 2.1, we de-

termine the set of equations arising from the response-excitation theory for a simple

first-order nonlinear ordinary differential equation driven by purely additive random

noise. The connection between the response-excitation approach and the classical

response approach is established in section 2.2, for random noise with arbitrary

correlation time. Ordinary differential equations involving random parameters are

treated in section 2.3, and subsequently, first order non-linear and quasi-linear par-

tial differential equations are discussed in section 2.4 and 2.5, respectively. Finally,

in section 2.6, we present a numerical application to the tumor cell growth model

recently proposed by [223].

2.1 Theory of response-excitation probability den-

sity

In this section we develop a systematic methodology to determine an equation for

the joint response-excitation probability density function of a stochastic dynamical

15
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system driven by colored noise. To this end, let us first consider the following simple

prototype problem

ẋ (t;ω) = g (x (t;ω) , t) + f (t;ω) , x (t0;ω) = x0 (ω) , (2.1.1)

where f (t;ω) is a smooth colored random noise while g(x, t) is a nonlinear function,

which is assumed to be Lipschitz continuous in x and continuous in t1. The solution

to (5.2.2) (when it exists) is a nonlocal functional of the forcing process f , which

will be denoted as xt[f ]. Similarly, we use the shorthand notation fs to identify the

random variable f(s;ω), i.e. the stochastic process f at time s. We also assume that

the problem (5.2.2) admits the existence of the joint response-excitation probability

density function, i.e. the joint probability density function of the response process

xt[f ] at time t and the excitation process fs at time s. Such a probability density

has the following functional integral representation

p
(a,b)
x(t)f(s)

def
= 〈δ (a− xt[f ]) δ (b− fs)〉

=

∫
D[f ]Q[f ]δ (a− xt[f ]) δ (b− fs) , s, t ≥ t0 a, b ∈ R , (2.1.2)

where Q[f ] denotes the probability density functional of the random forcing ( [62],

p. 467) while D[f ] is the functional integral measure [90,91,144]. The representation

1We shall assume that the process f (t;ω) is real-valued and at least continuous with probability
measure Pf and sample space Y, which can be taken to be a quite general separable Banach space.
For example, Y = C(k)(I), I ⊆ R, for k ∈ N∪{0}. Standard existence and uniqueness theory ( [174])
then ensures that there is a stochastic process x (t;ω) with sample space X = C(k+1)(I) (i.e., at
least differentiable), a probability measure Px and a joint probability space (X ×Y,B(X ×Y),Pxf )
such that the joint process {x(t;ω), f(t;ω)} verifies the stochastic ordinary differential equation
(5.2.2).
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(2.1.2) is based on the following finite dimensional result (see, e.g., Eq. (15) of [100])

p̂
(a,b)
x(ti)f(tj )

def
=

∫
· · ·
∫

︸ ︷︷ ︸
N

Q (f(t1), ..., f(tN)) δ (a− xti (f(t1), ..., f(tN)))

δ (b− f(tj)) df(t1) · · · df(tN) , (2.1.3)

where Q (f(t1), ..., f(tN)) denotes the joint probability density of the forcing process

at times t1,..., tN (i.e. a random vector), while xti (f(t1), ..., f(tN)) is a nonlinear

mapping from RN into R representing the response process at time ti as a function

of the forcing process at times t1,..., tN . The functional integral (2.1.2) is defined

as the limit of Eq. (2.1.3) as N goes to infinity. In this sense, in Eq. (2.1.2) we

recognize the standard definitions of Q[f ] and D[f ] as given, e.g., by [144] and [106]

Q[f ]
def
= lim

N→∞
Q (f(t1), ..., f(tN)) , (2.1.4)

D[f ] def= lim
N→∞

N∏

j=1

df(tj) , (2.1.5)

xt[f ]
def
= lim

N→∞
xt (f(t1), ..., f(tN)) , (2.1.6)

for an arbitrary discretization of the integration period into N points.

An evolution equation for the joint response-excitation probability density of the

system (5.2.2) can be determined by differentiating Eq. (2.1.2) with respect to t.

This yields

∂p
(a,b)
x(t)f(s)

∂t
= − ∂

∂a
〈δ (a− xt[f ]) ẋtδ (b− fs)〉

= − ∂

∂a
〈δ (a− xt[f ]) g (xt[f ], t) δ (b− fs)〉 −

∂

∂a
〈δ (a− xt[f ]) ftδ (b− fs)〉

= − ∂

∂a

(
g (a, t) p

(a,b)
x(t)f(s)

)
− ∂

∂a
〈δ (a− xt[f ]) ftδ (b− fs)〉 , s, t ≥ t0.

(2.1.7)
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Taking the limit for s → t gives the following result, first obtained by [168] using a

Hopf characteristic functional approach

lim
s→t

∂p
(a,b)
x(t)f(s)

∂t
= − ∂

∂a

(
g (a, t) p

(a,b)
x(t)f(t)

)
− b

∂p
(a,b)
x(t)f(t)

∂a
, t ≥ t0 a, b ∈ R . (2.1.8)

This equation looks like a closed evolution equation for the joint response-excitation

probability density function of the stochastic dynamical system along the direction

s = t. In the work of [168], Eq. (2.1.8) was also accompanied with an initial condition

p
(a,b)
x(t0)f(t0)

and with the marginal compatibility condition2

∫ ∞

−∞

p
(a,b)
x(t)f(s)da = p

(b)
f(s) , t, s ≥ t0 b ∈ R (2.1.9)

expressing the fact that the evolution of the joint response-excitation density has to

be consistent with the evolution of the excitation density p
(b)
f(t). Note that since the

stochastic process f(t;ω) is given, p
(b)
f(t) is a known function. In addition, the joint

density p
(a,b)
x(t)f(t) has to satisfy the following two obvious, yet essential, constitutive

conditions2

p
(a,b)
x(s)f(t) ≥ 0 ,

∫ ∞

−∞

∫ ∞

−∞

p
(a,b)
x(s)f(t)dadb = 1 , t, s ≥ t0 a, b ∈ R . (2.1.10)

The system (2.1.8)-(2.1.10) was proposed as a computable set of equations describing

the evolution of the joint response-excitation probability density function of dynam-

ical systems driven by colored noise. Note that in the extended probability space

consisting of the joint response-excitation statistics, the standard closure problem

arising, e.g., in the classical colored noise master equation [82] seems to be over-

come. However, the presence of the limit partial derivative at the left hand side of

Eq. (2.1.8) should warn us on the fact that we are not dealing with a standard par-

2The integral is formally written from −∞ to ∞ although the probability density p
(a,b)
x(t)f(s) may

be compactly supported.
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tial differential equation. Indeed Eq. (2.1.8) is rather a differential constraint [193]

to be satisfied by the joint response-excitation probability density function of any

solution to Eq. (5.2.2) along the line s = t. Preliminary insight into the question

of well-posedness of the boundary value problem (2.1.8)-(2.1.10) can be gained by

expanding Eq. (2.1.7) for s in the neighborhood of t. This gives us a first-order

correction to the differential constraint (2.1.8), which ultimately leads to a standard

partial differential equation for the joint density p
(a,b)
x(t)f(t) on the infinitesimal strip

S(ε) =
⋃

t≥t0

I
(ε)
t , where I

(ε)
t

def
= {s ≥ t0 , |s− t| ≤ ε} , t ≥ t0 , ε→ R+ .

(2.1.11)

To this end, let us assume that the random forcing process is differentiable in time

and expand it into a Taylor series around s as

ft = fs + (t− s)ḟs + · · · . (2.1.12)

A substitution of this expansion back into Eq. (2.1.7) yields, after simple mathe-

matical manipulations,

∂p
(a,b)
x(t)f(s)

∂t
= − ∂

∂a

(
g (a, t) p

(a,b)
x(t)f(s)

)
− b

∂p
(a,b)
x(t)f(s)

∂a
+ (t− s) ∂

∂a

∫ b

−∞

∂p
(a,b′)
x(t)f(s)

∂s
db′ .

(2.1.13)

This equation holds for all t ≥ t0 and for s ∈ I(ε)t , i.e., s in the neighborhood of t (see

(2.1.11)). Analysis of Eq. (2.1.13) clearly shows that the derivatives ∂p
(a,b)
x(t)f(s)/∂t

and ∂p
(a,b)
x(t)f(s)/∂s are coupled. In other words, in order to compute the joint response-

excitation probability density function in the neighborhood of s = t we need an

additional expression for ∂p
(a,b)
x(t)f(s)/∂s. This is also the case when we take the limit
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s→ t. In fact, by using the obvious identity

∂p
(a,b)
x(t)f(t)

∂t
= lim

t→s

∂p
(a,b)
x(t)f(s)

∂s
+ lim

s→t

∂p
(a,b)
x(t)f(s)

∂t
(2.1.14)

we can see that the dynamics of the joint response-excitation probability density

function in the direction s = t (i.e. a directional derivative) can be represented as a

superimposition of two differential constraints: the first one is Eq. (2.1.8), while the

second one is

lim
t→s

∂p
(a,b)
x(t)f(s)

∂s
= − ∂

∂b
〈δ (a− xt[f ]) δ (b− ft) ḟt〉 . (2.1.15)

This yields the partial differential equation

∂p
(a,b)
x(t)f(t)

∂t
= − ∂

∂a

(
g (a, t) p

(a,b)
x(t)f(t)

)
− b

∂p
(a,b)
x(t)f(t)

∂a
− ∂

∂b
〈δ (a− xt[f ]) δ (b− ft) ḟt〉 ,

(2.1.16)

which is the complete evolution equation governing the dynamics of the joint

response-excitation probability density function of the system. Equation (2.1.16)

can be evaluated further if one has available an expression for the average

〈δ (a− xt[f ]) δ (b− ft) ḟt〉 or, equivalently, 〈δ (a− xt[f ]) δ (b− fs)〉. Such expression

involves nonlocal functionals of the random forcing process f and it can be found

in [196]. As we shall see in the next subsection, if we do not include the limit deriva-

tive (2.1.15) - i.e. the differential constraint complementary to Eq. (2.1.8) - within

the set of equations, then the system (2.1.8)-(2.1.10) turns out to be undetermined,

in the sense that it possibly admits an infinite number of solutions3.

3In the numerical scheme employed by [168] this multiplicity was overcome by using a represen-
tation of the solution to Eq. (2.1.8) in terms of a Gaussian kernels. This introduces implicitly a
symmetry in the covariance structure of the system, which ultimately results in a closure model.
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2.1.1 Ill-posedness of the boundary value problem (2.1.8)-

(2.1.10)

Let us consider the following trivial first-order dynamical system driven by a smooth

random force f(t;ω) 



ẋ (t;ω) + x (t;ω) = f(t;ω)

x (t0;ω) = x0 (ω)

(2.1.17)

For the purposes of the present example it is enough to set f(t;ω) = sin(t) + ξ(ω),

where ξ(ω) is a Gaussian random variable. Let us also assume that the initial state

of the system x0 (ω) is Gaussian distributed with zero-mean, and that x0 (ω) is

independent of ξ(ω). The analytical solution to (2.1.17) is obviously

x(t;ω) = e−(t−t0)

[∫ t

t0

e(τ−t0)f(τ ;ω)dτ + x0(ω)

]

= e−(t−t0)

[
ξ(ω)

(
et−t0 − 1

)
+ x0(ω) +

1

2
et−t0 (sin(t)− cos(t))− 1

2
(sin(t0)− cos(t0))

]
.

(2.1.18)

This allows us to obtain the joint probability of x(t;ω) and f(s;ω) by using the

classical mapping approach (see, e.g., [141] p. 142). Specifically, we consider the

following mapping between the random variables (ξ(ω), x0(ω)) and (x(t;ω), f(s;ω))





x(t;ω) = A(t)ξ(ω) +B(t)x0(ω) + C(t)

f(s;ω) = sin(s) + ξ(ω)

(2.1.19)

where

A(t)
def
= 1− e−(t−t0), B(t)

def
= e−(t−t0),

C(t)
def
=

1

2

[
(sin(t)− cos(t))− e−(t−t0) (sin(t0)− cos(t0))

]
.
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This yields the joint response-excitation probability density function

p
(a,b)
x(t)f(s) =

1

2πB(t)
exp

[
−1
2
(b− sin(s))2 − (a− A(t)b+ A(t) sin(s)− C(t))2

2B(t)2

]
.

(2.1.20)

It is straightforward to verify that (2.1.20) satisfies

lim
s→t

∂p
(a,b)
x(t)f(s)

∂t
=

∂

∂a

(
ap

(a,b)
x(t)f(t)

)
− b

∂p
(a,b)
x(t)f(t)

∂a
, t ≥ t0 a, b ∈ R , (2.1.21)

which is the equation arising from Eq. (2.1.8) by setting g(a, t) = −a. Also, the

marginal compatibility condition (2.1.9) as well as the constitutive relations (2.1.10)

are obviously verified. However, if we set C(t) = α(t) in (2.1.20), where α(t) is

an arbitrary function such that α(t0) = 0, then we easily see that we still have a

probability density function satisfying Eqs. (2.1.21), (2.1.9), (2.1.10) and the initial

condition. This suggest that this boundary value problem is not well-posed, in the

sense that it admits an infinite number of solutions. In addition, we remark that

setting C(t) = α(t) in (2.1.20) is not the only degree of freedom we have, as other

solutions can be constructed. These observations provide a definitive answer to the

question raised by [168], p. 295, regarding the solvability theory of the system (2.1.8)-

(2.1.10). The multiplicity of solutions admitted by such system arises because the

correlation structure between the response process xt and the excitation process fs

was not properly taken into account in the formulation of the theory.

2.2 An evolution equation for the response prob-

ability density

In the past few decades, many researchers attempted to determine a closed equation

describing the evolution of the response probability density of a stochastic system
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driven by colored random noise (see, e.g., [57, 62, 84, 127, 178]). Perhaps, the first

effective approach was developed by the school surrounding [178] and co-workers.

The starting point is the functional representation of the response probability density.

For the system (5.2.2) we have

p
(a)
x(t) = 〈δ (a− xt[f ])〉 , (2.2.1)

where the average is with respect to the joint probability functional of the excitation

process and the initial state. Differentiation of (2.2.1) with respect to time yields

∂p
(a)
x(t)

∂t
= − ∂

∂a

(
g(a, t)p

(a)
x(t)

)
− ∂

∂a
〈ftδ (a− xt[f ])〉 . (2.2.2)

This equation can be evaluated further if one has available an expression for the

average appearing in the last term at the right hand side. Among different methods

devised to represent such quantity we recall small correlation time expansions [41,62,

113,178], cumulant resummation methods [113,114], functional derivative techniques

[81,82,92], path integral methods [121,142,189,210], decoupling approximations [84]

and operator projection methods [57, 75].

2.2.1 Consistency of the response-excitation theory with the

classical response theory

It is important at this point to prove that the response-excitation theory is consis-

tent with classical approaches for the response probability density function. This

establishes a full correspondence between the two methods. To this end, let us first

consider the differential constraint (2.1.8) and integrate it with respect to the variable
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b from −∞ to ∞. This yields

∂p
(a)
x(t)

∂t
= − ∂

∂a

(
g (a, t) p

(a)
x(t)

)
− ∂

∂a

(∫ ∞

−∞

bp
(a,b)
x(t)f(t)db

)
. (2.2.3)

Now, let us take a closer look at the last term at the right hand side of Eq. (2.2.3).

By definition (2.1.2), we have

∫ ∞

−∞

bp
(a,b)
x(t)f(t)db =

∫ ∞

−∞

b〈δ (a− xt[f ]) δ (b− ft)〉db

= 〈δ (a− xt[f ])
∫ ∞

−∞

bδ (b− ft) db〉

= 〈δ (a− xt[f ]) ft〉 . (2.2.4)

If we substitute this result into Eq. (2.2.3) we obtain exactly Eq. (2.2.2). Therefore,

we have shown that the differential constraint (2.1.8) is consistent with the classical

response approach for random noise with arbitrary correlation time. This result

extends the one obtained by [168] for systems driven by white-noise.

Next, we consider the evolution equation (2.1.16). By following the same steps

that led us to the consistency result just discussed, we can show that the classical re-

sponse approach is also included in Eq. (2.1.16). In fact, if we perform an integration

with respect to b from −∞ to ∞ we see that the last term in Eq. (2.1.16) vanishes.

This is due to the properties of the probability density function at ±∞. Therefore,

both the differential constraint (2.1.8) and the full evolution equation (2.1.16) are

consistent with the classical response theory.
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2.3 REPDF evolution equation for nonlinear stochas-

tic ODEs

Let us consider the following nonlinear stochastic dynamical system

dx(t;ω)

dt
= G(x(t;ω), ξ(ω), t), x(t0;ω) = x0(ω), (2.3.1)

where x(t;ω) ∈ Rn is a multi-dimensional stochastic process, while ξ(ω) ∈ Rm

and x0(ω) ∈ Rn are random variables with known joint probability function. The

stochastic system (2.3.1) can be high dimensional as it can arise, for instance, from a

discretization of a stochastic PDE subject to random boundary conditions, random

initial conditions or random forcing terms 4. The existence and the uniqueness of

the solution to (2.3.1) for each realization of ξ(ω) and x0(ω) allows us to consider the

stochastic flow x(t;ω) as a deterministic function of ξ(ω) and x0(ω), i.e. x(t;ω) =

x(t; ξ(ω), x0(ω)).

Under this hypothesis, by using the response-excitation theory [49, 111, 196] it

is straightforward to obtain an exact closed equation for the joint REPDF of the

random vectors x(t;ω) and ξ(ω), namely

p
(a,b)
x(t)ξ

def
= 〈δ(a− x(t;ω)) δ(b− ξ(ω))〉 , t ≥ t0 a ∈ Rn b ∈ Rm , (2.3.2)

where the average operator 〈·〉 is with respect to the joint PDF of the random input

variables ξ(ω) and x0(ω), while δ denotes a multi-dimensional Dirac delta function,

4In this case, the phase space variables xj(t;ω) could be the Galerkin or the collocation coeffi-
cients of an expansion of the solution relatively to suitable spatial basis function φj(x), i.e.

u(x, t;ω) =

n∑

j=1

xj(t;ω)φj(x) .
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i.e.,

δ(a− x(t;ω)) def
=

n∏

i=1

δ(ai − xi(t;ω)) , δ(b− ξ(ω)) def=
m∏

k=1

δ(bk − ξk(ω)) .

The evolution equation for the joint REPDF (5.2.25) can be derived by differentiating

the functional integral representation (5.2.25) with respect to t. By using well known

identities involving the Dirac delta function [96, 100, 196], the time differentiation

yields

∂p
(a,b)
x(t)ξ

∂t
= −

n∑

i=1

∂

∂ai
〈ẋi(t)

n∏

i=1

δ(ai − xi(t;ω))
m∏

k=1

δ (bk − ξk)〉

= −
n∑

i=1

∂

∂ai
〈Gi (x(t), t; ξ1, ..., ξM)

n∏

i=1

δ(ai − xi(t;ω))
m∏

k=1

δ (bk − ξk)〉 ,

and we obtain
∂p

(a,b)
x(t)ξ

∂t
= L(t)p(a,b)x(t)ξ , (2.3.3)

where

L(t) def
= −

n∑

i=1

∂Gi(a, b, t)

∂ai
−

n∑

i=1

Gi(a, b, t)
∂

∂ai

is a first-order (time-dependent) linear partial differential operator in n variables

(a1,...,an) and m parameters (b1,...,bm). Time-dependence can arise, e.g., due to

time-dependent random boundary conditions in SPDEs or time-dependent random

forcing terms in SODEs.

The REPDF equation (2.3.3) is supplemented with appropriate boundary condi-

tions and with the initial condition p
(a,b)
x(t0)ξ

, expressing the joint PDF of x0(t0;ω) and

ξ(ω). Kinetic equations of type (2.3.3) were determined long time ago by Dostupov

and Pugachev in [49]. More recently, Li and Chen [111] introduced a similar theory

in the context of stochastic dynamics of structures (see [111] Ch. 7-8 and [29]) by

using conservation of probability arguments.
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We notice that the REPDF equation (2.3.3) is analogous to the Liouville equation

of classical statistical mechanics, as it governs the evolution of the joint PDF of the

phase space. This analogy can be exploited even further by noting that the ODE

system (2.3.1) can be rewritten as a larger system subject only to a random initial

condition. To this end, it is sufficient to define a new set of phase variables y(t;ω)

evolving according to

dy(t;ω)

dt
= 0 , y(t0;ω) = ξ(ω) , y(t;ω) ∈ Rm , (2.3.4)

and replace the vector ξ(ω) in (2.3.1) with y(t;ω). This yields

dx(t;ω)

dt
= G(x(t;ω), y(t;ω), t) , x(t0;ω) = x0(ω) . (2.3.5)

The system (2.3.4)-(2.3.5) is equivalent to (2.3.1), but now the random variables ξ(ω)

appear as an initial condition for y(t;ω). In this form the Liouville theory applies,

leading us to the joint REPDF equation (2.3.3).

Time integration schemes for (2.3.3) relying directly on formal representations,

such as Magnus expansions [14], usually require the computation of exponential op-

erators involving L(t). As a result of discretization of the phase space, L(t) typically

becomes a very large matrix and, as a consequence, the exponentiation operation is

exceedingly costly [165, 182].

2.4 REPDF equations for first-order nonlinear

stochastic PDEs

Let us consider the nonlinear scalar evolution equation

∂u

∂t
+N (u, ux, x, t) = 0 , (2.4.1)
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where N is a continuously differentiable function. For the moment, we restrict our

attention to only one spatial dimension and assume that the field u(x, t;ω) is ran-

dom as a consequence of the fact that the initial condition or the boundary condition

associated with Eq. (2.4.1) are random. A more general case involving a random

forcing term will be discussed later in this section. As is well known, the full statis-

tical information of the solution to Eq. (2.4.1) can be always encoded in the Hopf

characteristic functional of the system [194]. In some very special cases, however,

the functional differential equation satisfied by the Hopf functional can be reduced

to a standard partial differential equation for the one-point one-time characteristic

function or, equivalently, for the PDF of the system. First-order nonlinear scalar

stochastic PDEs of the form (2.4.1) belong to this class and, in general, they admit

a reformulation in terms of the joint density of u and its first order spatial derivative

ux at the same space-time location, i.e.,

p(a,b)uux
= 〈δ(a− u(x, t))δ(b− ux(x, t))〉 . (2.4.2)

The average operator 〈·〉 here is defined as an integral with respect to the joint prob-

ability density functional of the random initial condition and the random boundary

condition. A differentiation of Eq. (2.4.2) with respect to time yields

∂p
(a,b)
uux

∂t
= − ∂

∂a
〈δ(a− u)utδ(b− ux)〉 −

∂

∂b
〈δ(a− u)δ(b− ux)uxt〉 . (2.4.3)

If we substitute Eq. (2.4.1) and its derivative with respect to x into Eq. (2.4.3) we

obtain

∂p
(a,b)
uux

∂t
=

∂

∂a

(
N p(a,b)uux

)
+

∂

∂b
〈
(
∂N
∂u

ux +
∂N
∂ux

uxx +
∂N
∂x

)
δ(a− u)δ(b− ux)〉 .

(2.4.4)
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Next, let us recall that N and its derivatives are at least continuous functions (by

assumption) and therefore by using [194] they can be taken out of the averages.

Thus, the only item that is missing in order to close Eq. (2.4.4) is an expression for

the average of uxx in terms of the probability density function. Such an expression

can be easily obtained by integrating the identity

∂p
(a,b)
uux

∂x
= −b∂p

(a,b)
uux

∂a
− ∂

∂b
〈δ(a− u)δ(b− ux)uxx〉 (2.4.5)

with respect to b from −∞ to b and taking into account the fact that the average of

any field vanishes when b→ ±∞ due to the properties of the underlying probability

density functional. Therefore, Eq. (2.4.5) can be equivalently written as

〈δ(a− u)δ(b− ux)uxx〉 = −
∫ b

−∞

∂p
(a,b′)
uux

∂x
db′ −

∫ b

−∞

b′
∂p

(a,b′)
uux

∂a
db′ . (2.4.6)

A substitution of this relation into Eq. (2.4.4) yields the final result

∂p
(a,b)
uux

∂t
=

∂

∂a

(
N p(a,b)uux

)
+

∂

∂b

[(
b
∂N
∂a

+
∂N
∂x

)
p(a,b)uux

−∂N
∂b

(∫ b

−∞

∂p
(a,b′)
uux

∂x
db′ +

∫ b

−∞

b′
∂p

(a,b′)
uux

∂a
db′

)]
, (2.4.7)

where N here is a function of a, b, x and t, respectively. Equation (2.4.7) is the

correct evolution equation for the joint PDF associated with the solution to an

arbitrary nonlinear evolution problem in the form (2.4.1). This equation made its

first appearance in [118], although the original published version has many typos and

a rather doubtful derivation5. A generalization of Eq. (2.4.1) includes an external

5The equation numbering in this footnote corresponds to the one in Ref. [118]. First of all, we
notice a typo in Eq. (1.5), i.e. two brackets are missing. Secondly, according to Eq. (1.1) f is a
multivariable function that includes also x and therefore one term is missing in Eq. (1.6). Also,
the final result (1.8) seems to have three typos, i.e., the variable v is missing in the last integral
within the brackets (this typo was corrected in the subsequent Eq. (1.9)) and there are two signs
that are wrong. We remark that these sign errors are still present in Eq. (1.9).
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random force in the form

∂u

∂t
+N (u, ux, x, t) = f(x, t;ω) . (2.4.8)

Depending on the type of the random field f and on its correlation structure, different

stochastic methods can be employed. For instance, if the characteristic variation of

f is much shorter than the characteristic variation of the solution u then we can use

small correlation space-time expansions. In particular, if the field f is Gaussian then

we can use the Furutsu-Novikov-Donsker [46,65,136] formula (see also [16,17,103]).

Alternatively, if we have available a Karhunen-Loève expansion

f(x, t;ω) =
m∑

k=1

λkξk(ω)ψk(x, t) , (2.4.9)

then we can obtain a closed and exact equation for the joint probability of u, ux and

all the (uncorrelated) random variables {ξk(ω)} appearing in the series (2.4.9), i.e.,

p
(a,b,{ck})
u(x,t)ux(x,t){ξk}

= 〈δ(a− u(x, t))δ(b− ux(x, t))
m∏

k=1

δ(ck − ξk)〉 . (2.4.10)

For the specific case of Eq. (2.4.8) we obtain the PDF equation

∂P

∂t
=

∂

∂a
(NP ) + ∂

∂b

[(
b
∂N
∂a

+
∂N
∂x

)
P

−∂N
∂b

(∫ b

−∞

∂P

∂x
db′ +

∫ b

−∞

b′
∂P

∂a
db′
)]
−
[

m∑

k=1

λkckψk

]
∂P

∂a
,(2.4.11)

where we have used the shorthand notation

P
def
= p

(a,b,{ck})
u(x,t)ux(x,t){ξk}

. (2.4.12)
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Note that Eq. (2.4.11) is linear and exact but it involves 4 variables (t, x, a and

b) and m parameters ({c1, ..., cm}). In any case, once the solution is available6 we

can integrate out the variables (b, {ck}) and obtain the response probability of the

system, i.e. the probability density of the solution u at every space-time point as

p
(a)
u(x,t) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p
(a,b,{ck})
u(x,t)ux(x,t){ξk}

dbdc1 · · · dcm . (2.4.13)

The integrals above are formally written from −∞ to ∞ although the probability

density we are integrating out may be compactly supported. We conclude this section

by observing that the knowledge of the probability density function of the solution to

a stochastic PDE at a specific location does not provide all the statistical information

of the system. For instance, the calculation of the two-point correlation function

〈u(x, t)u(x′, t′)〉 requires the knowledge of the joint probability density of the solution

u at two different locations, i.e. p
(a,b)
u(x,t)u(x′,t′). We will go back to this point in section

2.5.

2.4.1 Nonlinear advection problem with an additional quadratic

nonlinearity

Let us consider the following quadratic prototype problem (see, e.g., [145], p. 358)





∂u

∂t
+ u

∂u

∂x
+ ν

(
∂u

∂x

)2

= 0 , ν ≥ 0 , x ∈ [0, 2π] , t ≥ t0

u(x, t0;ω) = A sin(x) + η(ω) , A > 0

Periodic B.C.

(2.4.14)

where η(ω) is a random variable with known probability density function. If we

substitute Eq. (2.4.14) and its derivative with respect to x into Eq. (2.4.3) we

6Later on we will discuss in more detail numerical algorithms and techniques that can be em-
ployed to compute the numerical solution to a multidimensional linear PDE like (2.4.11).
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obtain

∂p
(a,b)
uux

∂t
=
(
ab+ νb2

) ∂p(a,b)uux

∂a
+ bp(a,b)uux

+
∂

∂b
〈δ(a− u)δ(b− ux)

(
u2x + uuxx + 2νuxuxx

)
〉 .

(2.4.15)

At this point we need an explicit expression for the last average at the right hand

side of Eq. (2.4.15) in terms of the probability density function (2.4.2). Such an

expression can be easily determined by using the averaging rule [194] and identity

(2.4.6). We finally get

∂p
(a,b)
uux

∂t
=− a∂p

(a,b)
uux

∂x
+ bp(a,b)uux

+
∂

∂b

(
b2p(a,b)uux

)
−

νb2
∂p

(a,b)
uux

∂a
− 2ν

(
b
∂p

(a,b)
uux

∂x
+

∫ b

−∞

b′
∂p

(a,b′)
uux

∂a
db′ +

∫ b

−∞

∂p
(a,b′)
uux

∂x
db′

)
. (2.4.16)

This equation is consistent with the general law (2.4.7) with N (a, b, x, t) = ab+ νb2.

An alternative derivation of Eq. (2.4.16) is also provided in [194] by employing the

Hopf characteristic functional approach. Note that Eq. (2.4.16) is a linear partial

differential equation in 4 variables (a, b, x, t) that can be integrated for t ≥ t0

once the joint probability of u and ux is provided at some initial time t0. In the

present example, such an initial condition can be obtained by observing that the

spatial derivative of the random initial state u(x, t0;ω) = A sin(x) + η(ω) is the

deterministic function

ux(x, t0;ω) = A cos(x) . (2.4.17)
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Therefore, by applying the Dirac delta formalism, we see that the initial condition

for the joint probability density of u and ux is

p
(a,b)
u(x,t0)ux(x,t0)

= 〈δ(a− A sin(x)− η)δ(b− A cos(x))〉

= δ(b−A cos(x))〈δ(a−A sin(x)− η)〉

= δ(b−A cos(x))
1√
2π
e−(a−A sin(x))2/2 , (2.4.18)

provided η(ω) is a Gaussian random variable. At this point it is clear that Eq.

(2.4.16) has to be interpreted in a weak sense in order for the initial condition

(2.4.18) to be meaningful. From a numerical viewpoint the presence of the Dirac

delta function within the initial condition introduces significant difficulties. In fact,

if we adopt a Fourier-Galerkin framework then we need a very high (theoretically

infinite) resolution in the b direction in order to resolve such initial condition and,

consequently, the proper temporal dynamics of the probability function. In addi-

tion, the Fourier-Galerkin system associated with Eq. (2.4.16) is fully coupled and

therefore inaccurate representations of the Dirac delta appearing in the initial con-

dition rapidly propagate within the Galerkin system, leading to numerical errors.

However, we can always apply a Fourier transformation with respect to a and b to

Eqs. (2.4.16) and (2.4.18), before performing the numerical discretization. This is

actually equivalent to look for a solution in terms of the joint characteristic function

instead of the joint probability density function. The corresponding evolution equa-

tion is obtained in [194] and it is rewritten hereafter for convenience (φ
(a,b)
uux denotes

the joint characteristic function of u and ux, while i is the imaginary unit)

∂φ
(a,b)
uux

∂t
= ib

∂2φ
(a,b)
uux

∂b2
− i∂φ

(a,b)
uux

∂b
+ i

∂2φ
(a,b)
uux

∂a∂x
− iνa∂

2φ
(a,b)
uux

∂b2

− 2
iν

b

(
∂φ

(a,b)
uux

∂x
− a∂φ

(a,b)
uux

∂b
− b∂

2φ
(a,b)
uux

∂b∂x

)
. (2.4.19)
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The initial condition for this equation is obtained by Fourier transformation of Eq.

(2.4.18), i.e.

φ
(a,b)
u(x,t0)ux(x,t0)

=
1√
2π
eibA cos(x)

∫ ∞

−∞

eiaα−(α−A sin(x))2/2dα . (2.4.20)

We do not address here the computation of the numerical solution to the problem

defined by Eqs. (2.4.16) and (2.4.18).

2.5 REPDF equations for first-order quasilinear

stochastic PDEs

In this section we obtain a kinetic equation for the probability density function

associated with the stochastic solutions to multidimensional quasilinear stochastic

PDE in the form

∂u

∂t
+P (u, t,x; ξ) · ∇xu = Q (u, t,x;η) . (2.5.1)

In this equation P and Q are assumed to be continuously differentiable functions,

x denotes a set of independent variables7 while ξ = [ξ1, ..., ξm] and η = [η1, ..., ηn]

are two vectors of random variables with known joint probability density function.

We remark that Eq. (2.5.1) models many physically interesting phenomena such

as ocean waves [20], linear and nonlinear advection problems, advection-reaction

equations [180, 186] and, more generally, scalar conservation laws. We first consider

the case where the stochastic solution u(x, t;ω) is random as consequence of the fact

that the initial condition or the boundary conditions are random. In other words,

7In many applications x is a vector of spatial coordinates, e.g., x = (x, y, z). In a more general
framework x is a vector of independent variables including, e.g., spatial coordinates and param-
eters. For example, the two-dimensional action balance equation for ocean waves in the Eulerian
framework [20, 207] is defined in terms of the following variables x = (x, y, θ, σ) where θ and σ
denote wave direction and wavelength, respectively.
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we temporarily remove the dependence on {ξk} and {ηk} in P and Q, respectively.

In this case we can determine an exact evolution equation for the one point one time

PDF

p
(a)
u(x,t) = 〈δ(a− u(x, t))〉 . (2.5.2)

The average here is with respect to the joint probability density functional of the

random initial condition and the random boundary conditions. Differentiation of

(2.5.2) with respect to t yields

∂p
(a)
u(x,t)

∂t
= − ∂

∂a
〈δ(a− u(x, t)) [−P (u, t,x) · ∇xu+Q (u, t,x)]〉 . (2.5.3)

By using the results of the previous sections it is easy to show that this equation can

be equivalently written as

∂p
(a)
u(x,t)

∂t
+

∂

∂a

(
P (a, t,x) ·

∫ a

−∞

∇xp
(a′)
u(x,t)da

′

)
= − ∂

∂a

(
Q (a, t,x) p

(a)
u(x,t)

)
. (2.5.4)

Note that this is a linear partial differential equation in (D + 2) variables, where D

denotes the number of independent variables appearing in the vector x. Such dimen-

sionality is completely independent of the number of random variables describing the

boundary conditions or the initial conditions.

As we have previously pointed out, the knowledge of the one-point one-time prob-

ability density function of the solution to a stochastic PDE does not provide all the

statistical information about the stochastic system. For instance, the computation

of the two-point correlation function requires the knowledge of the joint probability

of the solution field at two different locations. In order to determine such equation

let us consider the joint density

p
(a,b)
u(x,t)u(x′ ,t) = 〈δ(a− u(x, t))δ(b− u(x′, t))〉 . (2.5.5)
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Differentiation of Eq. (2.5.2) with respect to time yields

∂

∂t
p
(a,b)
u(x,t)u(x′,t) =−

∂

∂a
〈δ(a− u(x, t))δ(b− u(x′, t)) [−P (u, t,x) · ∇)xu+Q (u, t,x)]〉

− ∂

∂b
〈δ(a− u(x, t))δ(b− u(x′, t)) [−P (u, t,x′) · ∇x′u+Q (u, t,x′)]〉 ,

(2.5.6)

and therefore

∂

∂t
p
(a,b)

u(x,t)u(x′
, t)

= − ∂

∂a

(
P (a, t,x) ·

∫ a

∇xp
(a′,b)
u(x,t)u(x′,t)da

′

)
− ∂

∂a

(
Q (a, t,x) p

(a,b)
u(x,t)u(x′,t)

)

− ∂

∂b

(
P (b, t,x) ·

∫ b

∇x′p
(a,b′)
u(x,t)u(x′,t)db

′

)
− ∂

∂b

(
Q (b, t,x′) p

(a,b)
u(x,t)u(x′ ,t)

)
. (2.5.7)

Next, we consider the full Eq. (2.5.1) and we look for a kinetic equation involving

the joint probability density of u and all the random variables {ξi} and {ηj}

p
(a,b,c)
u(x,t)ξη

def
= 〈δ(a− u(x, t))

m∏

k=1

δ(bk − ξk)
n∏

j=1

δ(ck − ηk)〉. (2.5.8)

The average here is with respect to the joint probability density functional of the

random initial condition, the random boundary conditions and all the random vari-

ables {ξi} and {ηj}. By following exactly the same steps that led us to Eq. (2.5.4)

we obtain

∂

∂t
p
(a,b,c)
u(x,t)ξη +

∂

∂a

(
P (a, t,x, b) ·

∫ a

−∞

∇p(a′,b,c)u(x,t)ξηda
′

)
= − ∂

∂a

(
Q (a, t,x, c) p

(a,b,c)
u(x,t)ξη

)
.

(2.5.9)

Thus, if x is a vector of D variables then Eq. (2.5.9) involves (D + 2) variables

and (n +m) parameters, i.e. b = (b1, ..., bm), c = (c1, ..., cn). Therefore, the numer-

ical solution to Eq. (2.5.9) necessarily involves the use of computational schemes

specifically designed for high-dimensional problems such as sparse grid or separated
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representations [33, 108, 140]. However, let us remark that if P and Q are easily

integrable then we can apply the method of characteristics directly to Eq. (2.5.1)

and obtain an analytical solution to the problem. Unfortunately, this is not always

possible and therefore the use of numerical approaches is often unavoidable.

2.5.1 Linear advection

Let us consider the simple linear advection problem





∂u

∂t
+
∂u

∂x
= σξ(ω)ψ(x, t) , σ ≥ 0 , x ∈ [0, 2π] , t ≥ t0

u(x, t0;ω) = u0(x;ω)

Periodic B.C.

(2.5.10)

where u0(x;ω) is a random initial condition of arbitrary dimensionality, ξ(ω) is a

random variable and ψ is a prescribed deterministic function. We look for an equation

involving the joint response-excitation probability density function

p
(a,b)
u(x,t)ξ = 〈δ(a− u(x, t))δ(b− ξ)〉 . (2.5.11)

The average here is with respect to the joint probability measure of u0(x;ω) and

ξ(ω). Differentiation of (2.5.11) with respect to t and x yields, respectively

∂p
(a,b)
u(x,t)ξ

∂t
= − ∂

∂a
〈δ(a− u)utδ(b− ξ)〉 , (2.5.12)

∂p
(a,b)
u(x,t)ξ

∂x
= − ∂

∂a
〈δ(a− u)uxδ(b− ξ)〉 . (2.5.13)
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A summation of Eqs. (2.5.12) and (2.5.13) gives the final result

∂p
(a,b)
u(x,t)ξ

∂t
+
∂p

(a,b)
u(x,t)ξ

∂x
= − ∂

∂a
〈δ(a− u) [ut + ux] δ(b− ξ)〉

= − ∂

∂a
〈δ(a− u)σξψδ(b− ξ)〉

= −σbψ(x, t)
∂p

(a,b)
u(x,t)ξ

∂a
. (2.5.14)

Thus, the problem corresponding to Eq. (2.5.10) can be formulated in probability

space as





∂p
(a,b)
u(x,t)ξ

∂t
+
∂p

(a,b)
u(x,t)ξ

∂x
= −σ

∂p
(a,b)
u(x,t)ξ

∂a
bψ(x, y) , σ ≥ 0 , x ∈ [0, 2π] , t ≥ t0

p
(a,b)
u(x,t0)ξ

= p
(a)
u0(x)

p
(b)
ξ

Periodic B.C.

(2.5.15)

where we have assumed that the process u0(x;ω) is independent of ξ and we have

denoted by p
(a)
u0(x)

and p
(b)
ξ the probability densities of the initial condition and ξ(ω),

respectively. Equation (2.5.15) is derived in [194] by employing a Hopf characteristic

functional approach. Once the solution to Eq. (2.5.15) is available, we can compute

the response probability of the system as

p
(a)
u(x,t) =

∫ ∞

−∞

p
(a,b)
u(x,t)ξdb (2.5.16)

and then extract all the statistical moments we are interested in, e.g.,

〈um(x, t;ω)〉 =
∫ ∞

−∞

amp
(a)
u(x,t)da . (2.5.17)
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2.5.2 Nonlinear advection

A more interesting problem concerns the computation of the statistical properties of

the solution to the randomly forced inviscid Burgers equation





∂u

∂t
+ u

∂u

∂x
= σξ(ω)ψ(x, t) , σ ≥ 0 , x ∈ [0, 2π] , t ≥ t0

u(x, t0;ω) = A sin(x) + η(ω) A ∈ R

Periodic B.C.

(2.5.18)

where, as before, ξ and η are assumed as independent Gaussian random variables

and ψ is a prescribed deterministic function. Note that the amplitude of the initial

condition controls the initial speed of the wave. We look for an equation involving

the probability density (2.5.11). To this end, we differentiate it with respect to t and

x

∂p
(a,b)
u(x,t)ξ

∂t
= − ∂

∂a
〈δ(a− u)utδ(b− ξ)〉 , (2.5.19)

∂p
(a,b)
u(x,t)ξ

∂x
= − ∂

∂a
〈δ(a− u)uxδ(b− ξ)〉 , (2.5.20)

a
∂p

(a,b)
u(x,t)ξ

∂x
= − ∂

∂a
〈δ(a− u)uuxδ(b− ξ)〉+ 〈δ(a− u)uxδ(b− ξ)〉 . (2.5.21)

By using Eq. (2.5.19) we obtain

〈δ(a− u)uxδ(b− ξ)〉 = −
∫ a

−∞

∂p
(a′,b)
u(x,t)ξ

∂x
da′ . (2.5.22)
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Finally, a summation of Eq. (2.5.19) and Eq. (2.5.21) (with the last term given by

Eq. (2.5.22)) gives





∂p
(a,b)
u(x,t)ξ

∂t
+ a

∂p
(a,b)
u(x,t)ξ

∂x
+

∫ a

−∞

∂p
(a′,b)
u(x,t)ξ

∂x
da′ = −σbψ(x, t)

∂p
(a,b)
u(x,t)ξ

∂a
, x ∈ [0, 2π] , t ≥ t0

p
(a,b)
u(x,t0)ξ

= pη(a, x)pξ(b)

Periodic B.C.

(2.5.23)

where, as before

pξ(b) =
1√
2π
e−b2/2 , pη(a, x) =

1√
2π
e−(a−A sin(x))2/2 . (2.5.24)

Equation (2.5.23) can be derived also by employing a Hopf characteristic functional

approach.

2.5.3 Advection-reaction equation

Let us consider a multidimensional advection-reaction system governed by the

stochastic PDE

∂u

∂t
+U(x, t;ω) · ∇u = H(u) , (2.5.25)

where x = (x, y, z) are spatial coordinates, U(x, t;ω) is a vectorial random field

with known statistics and H is a nonlinear function of u. Equation (2.5.25) has been

recently investigated by Tartakovsky and Broyda [180] in the context of transport

phenomena in heterogeneous porous media with uncertain properties8. In the sequel,

we shall assume that we have available a representation of the random fieldU(x, t;ω),

8In [180] it is assumed that H is random as a consequence of an uncertain reaction rate constant
κ(x;ω).
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e.g., a Karhunen-Loève series of each component in the form

U (x)(x, t;ω) =

mx∑

i=1

λ
(x)
i ξi(ω)Ψ

(x)
i (x, t) , (2.5.26)

U (y)(x, t;ω) =

my∑

j=1

λ
(y)
j ηj(ω)Ψ

(y)
j (x, t) , (2.5.27)

U (z)(x, t;ω) =

mz∑

k=1

λ
(z)
k ζk(ω)Ψ

(z)
k (x, t) . (2.5.28)

Note that each set of random variables {ξi}, {ηj} and {ζk} is uncorrelated, but

we can have a correlation between different sets. This gives us the possibility to

prescribe a correlation structure between different velocity components at the same

space-time location. Given this, let us look for an equation satisfied by the joint

probability density function

p
(a,b,c,d)
u(x,t)ξηζ = 〈δ(a− u(x, t))

mx∏

i=1

δ(bi − ξi)
my∏

j=1

δ(bj − ηj)
mz∏

k=1

δ(dk − ζk)〉 , (2.5.29)

where the average is with respect to the joint probability density functional of the

initial conditions, boundary conditions and random variables {ξ,η, ζ}. By following

the same steps that led us to Eq. (2.5.4), we obtain

∂P

∂t
+

(
mx∑

i=1

λ
(x)
i biΨ

(x)
i

)
∂P

∂x
+

(
my∑

i=1

λ
(y)
i ciΨ

(y)
i

)
∂P

∂y
+

(
mz∑

i=1

λ
(z)
i diΨ

(z)
i

)
∂P

∂z
= − ∂

∂a
(HP ) ,

(2.5.30)

where P is a shorthand notation for Eq. (2.5.29). Equation (2.5.30) involves 5 vari-

ables (a, x, y, z, t) and (mx + my + mz) parameters. Thus, the exact stochastic

dynamics of this advection-reaction system develops over a high-dimensional mani-

fold. In order to overcome such a dimensionality issue, Tartakovsky & Broyda [180]

obtained a closure approximation of the response probability associated with the so-

lution to Eq. (2.5.25) based on a Large Eddy Diffusivity (LED) scheme. Note that



42

a marginalization of Eq. (2.5.30) with respect to the parameters {b, c,d} yields an

unclosed equation for p
(a)
u(x,t).

2.6 A numerical application to a tumor cell growth

model

In order to verify the correctness of the aforementioned Eq. (2.3.3) we present here a

numerical example. In particular, we consider the transient properties of the tumor

cell growth model under immune response recently proposed by [223]. This model

includes additive as well as multiplicative colored noises (see also [58]) and it is

described by the equations

ẋ (t;ω) = g (x (t;ω)) + h (x (t;ω)) f(t;ω) + η(t;ω) , x(0;ω) = x0(ω) , (2.6.1)

where x (t;ω) denotes the population of tumor cells at time t while

g(x)
def
= x(1 − θx)− β x

x+ 1
, h(x)

def
= − x

x+ 1
. (2.6.2)

In Eqs. (2.6.2), β is the immune rate and θ is related to the rate of growth of

cytotoxic cells. These parameters are typically set to θ = 0.1, β = 2.26. Also,

the random process f(t;ω) represents the strength of the treatment (i.e., the dosage

of the medicine in chemotherapy or the intensity of the ray in radiotherapy) while

η(t;ω) is related to other factors, such as drugs and radiotherapy, that restrain the

number of tumor cells. We shall assume that f(t;ω) and η(t;ω) are two independent

Gaussians random processes with zero mean and correlation functions given by

〈f(t;ω)f(s;ω)〉 = D1

ℓ1
e−6(t−s)2/ℓ2

1 , 〈η(t;ω)η(s;ω)〉 = D2

ℓ2
e−6(t−s)2/ℓ2

2 , (2.6.3)
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ℓi ∞ 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002
Mi 1 1 2 3 5 9 18 43 85 170 423

Table 2.1: Number or terms Mi appearing in the series expansions (2.6.4) as a
function of the correlation times ℓi (see Eqs. (2.6.3)). The truncation is performed
in order to retain 97% of the total energy in the time interval [0, 1].

where ℓi and Di (i = 1, 2) denote, respectively, the correlation times and the correla-

tion amplitudes9 of the processes f(t;ω) and η(t;ω). The factor 6 at the exponents

has been introduced in order to make the correlation functions approximately zero

when |t−s| ≃ ℓi (see [198]). Also, the initial condition x0(ω) for the tumor density is

set to be a standard Gaussian variable with mean 〈x0(ω)〉 = 7.266. This mean value

corresponds to the state of stable tumor ( [223]) in the absence of random noises.

We expand both processes f(t;ω) and η(t;ω) in a finite-dimensional Karhunen-Loève

series

f(t;ω) =

M1∑

k=1

φk(t)ξk(ω) , η(t;ω) =

M2∑

k=1

ψk(t)ζk(ω) , (2.6.4)

where {ξ1(ω), ..., ξM1
(ω)} and {ζ1(ω), ..., ζM2

(ω)} are two sets of zero-mean i.i.d Gaus-

sian random variables, while φk(t) and ψk(t) are non-normalized eigenfunctions aris-

ing from the spectral decomposition of covariance kernels (2.6.3). The truncation of

the series (2.6.4) is performed in order to retain 97% of the total energy in the time

interval [0, 1]. The corresponding number of terms M1 and M2 is shown in table

2.1, as a function of the correlation time. In Figure 2.1 we plot several realizations

of the response process x(t;ω) for different (randomly sampled) realizations of the

forcing processes f(t;ω) and η(t;ω). The case with very small correlation times falls

within the range of validity of the small correlation time approximation considered

by [223]. The effective Fokker-Plank equation overcomes the curse of dimensionality,

and it can be solved by standard numerical methods. However, for large correlation

9The correlation amplitude ultimately controls the amplitude of the process, namely, when D1

is increased, then the amplitude of f(t;ω) increases.
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Figure 2.1: Tumor dynamics x(t;ω) corresponding to different (randomly sampled)
realizations of the excitation processes f(t;ω) and η(t;ω). Shown are three different
scenarios having random noises with different correlation times: ℓi = 0.2 (first row),
ℓi = 0.02 (second row) and ℓi = 0.002 (third row). For each case we sample three
realizations of f(t;ω) and η(t;ω) and, correspondingly, we compute three responses
of x(t;ω). The samples of f(t;ω), η(t;ω) and x(t;ω) are plotted by using the same
linestyle along each row.
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times such approach cannot be employed for obvious reasons. In these cases we need

to resort to other methods, e.g., methods based directly on random variables as dis-

cussed in section 2.3. To this end, we consider the following joint response-excitation

probability density associated with the system (6.2.1)-(2.6.4)

p
(a,b,c)
x(t)ξζ

def
= 〈δ (a− xt[ξ, ζ])

M1∏

k=1

δ (bk − ξk)
M2∏

k=1

δ (ck − ζk)〉 , (2.6.5)

where the average is with respect to the joint probability density of the variables

ξ(ω)
def
= {ξ1(ω), ..., ξM1

(ω)}, ζ(ω)
def
= {ζ1(ω), ..., ζM2

(ω)} and the initial condition

x0(ω). By differentiating Eq. (2.6.5) with respect to time and taking into account

Eq. (6.2.1), we obtain

∂p
(a,b,c)
x(t)ξζ

∂t
= − ∂

∂a

[(
g(a) + h(a)

M1∑

k=1

bkφk(t) +

M2∑

k=1

ckψk(t)

)
p
(a,b,c)
x(t)ξζ

]
. (2.6.6)

This is a linear transport equation in two variables, t and a, andM1+M2 parameters.

Under the assumption that the initial state of the system x0(ω) is independent of

ξ(ω) and ζ(ω), the initial condition for the joint density (2.6.5) is explicitly given by

p
(a,b,c)
x0ξζ

=

(
1

2π

)(M1+M2+1)/2

exp

[
−1
2

(
a2 +

M1∑

k=1

b2k +

M2∑

j=1

c2j

)]
. (2.6.7)

Once the solution to Eq. (2.6.6) is available, we obtain the response probability of

the system by marginalizing (2.6.5) with respect to {bk} and {cj}, i.e.,

p
(a)
x(t) =

∫ ∞

−∞

· · ·
∫ ∞

−∞︸ ︷︷ ︸
M1+M2

p
(a,b,c)
x(t)ξζ db1 · · · dbM1

dc1 · · · dcM2
. (2.6.8)

The numerical solution to Eqs. (6.2.1) and (2.6.6) is computed by using different

approaches. Specifically, for the stochastic ODE problem (6.2.1) we have employed
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(a) (b)

Figure 2.2: Temporal evolution of the response probability density (2.6.8) of the
tumor model (6.2.1). The correlation time of both processes (2.6.4) is set at ℓi = 10
(i.e. we have M1 = M2 = 1) while the amplitudes Di appearing in the correlations
(2.6.3) are set to (D1, D2) = (0.1, 5) (a) and (D1, D2) = (0.1, 0.001) (b).

both Monte Carlo (5 × 106 samples) and probabilistic collocation methods (PCM)

[60]. In the latter case, depending on the number of random variables, we have used

either Gauss-Hermite quadrature points or sparse grid (level 2) points for ξk and

ζj. On the other hand, the partial differential equation (2.6.6) is first discretized in

the a variable by using a Fourier-Galerkin spectral method of order 50, and then

collocated at either Gauss-Hermite points or sparse grid points in the variables bk

and cj. A second-order Runge-Kutta scheme is used to advance in time both Eqs.

(6.2.1) and (2.6.6).

In Figure 2.2 we plot the time evolution of the response probability density of the

system, i.e. the tumor density, for excitation processes with very large correlation

time (ℓi = 10) compared to the period of integration which is [0, 1]. We also show

the effects of a variation in the correlation amplitude D2 characterizing the random

process η(t;ω) restraining the number of tumor cells. The observed changes in

the temporal evolution of the response probability density function are consistent

with the results of [223]. The relevant statistics, i.e. the mean and the variance,

of the tumor density are compared in Figure 2.3 against similar results obtained

by using different stochastic approaches. This comparison clearly shows that the

transport equation (2.6.6) for the joint probability density function is indeed correct
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SODE-MC − PDF-PCM −− SODE-PCM − ·−
Figure 2.3: Time evolution of the mean and the variance of the tumor population for
random forcing processes f(t;ω) and η(t;ω) with different correlation times. Shown
are results obtained by using different stochastic methods: probabilistic collocation
(PCM) (Gauss-Hermite for ℓi = 10 (3 dimensions), and sparse grid level 2 for ℓi = 0.2
(11 dimensions) applied to the stochastic ODE (6.2.1) (dashed-doted line) and the
PDF equation (2.6.6) (dashed line); Monte Carlo simulation (5 ·106 samples) applied
to the stochastic ODE (2.6.6) (continuous line).

and allows for accurate predictions. The discrepancy observed in the lower right

variance plot between the Monte Carlo solution (continuous line) and the sparse

grid (level 2) solution of Eq. (2.6.6) (2 variables and 11 parameters) is due to an

insufficient integration accuracy when evaluating the statistical moments from the

response probability density function.
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2.7 Summary

By using functional integral methods, we have determined an equation describing the

evolution of the joint response-excitation probability density function of a first-order

nonlinear stochastic dynamical system driven by colored random noise with arbitrary

correlation time. This equation can be represented in terms of a superimposition of

two differential constraints, i.e. two partial differential equations involving unusual

limit partial derivatives. The first one of these constraints was determined by [168].

We have addressed the question of computability of the joint response-excitation

probability density function as a solution to a boundary value problem involving

only one differential constraint. By means of a simple analytical example, we have

shown that such problem is undetermined, in the sense that it admits an infinite

number of solutions. This result provides a definitive answer to the question first

raised by [168], p. 295, regarding the solvability theory of the system of equations

(2.1.8)-(2.1.10). In order to overcome this issue, we have included an additional

differential constraint, i.e. the complementary constraint (2.1.15), which yields a

complete evolution equation for the joint response-excitation density. This equation,

however, involves an average requiring a closure approximation just like in the classi-

cal response approach [127]. Such approximation can be constructed based on small

correlation time expansions.

We have also studied nonlinear differential equations involving random parame-

ters. This class of problems can be reformulated in an exact way, i.e. without any

closure, in terms of a possibly high-dimensional linear transport equation for the

joint response-excitation probability density function of the system. Such equation

can be solved numerically by exploiting recent advances in numerical methods for

high-dimensional systems such as proper generalized decomposition [33,132], sparse

grid collocation [60, 61] or functional ANOVA techniques [25, 155, 220]. In order to

investigate this possibility, we have applied one of these methods, i.e. sparse grid
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collocation, to the evolution equation arising from the tumor cell growth model re-

cently proposed by [223]. This allowed us to simulate the dynamics of the tumor

density for Gaussian forcing processes with low to moderate correlation times, i.e.

in a range where the small correlation time expansion considered by [223] does not

apply.



Chapter 3

Numerical method for REPDF

equation

In this chapter, we develop an efficient numerical method to compute the solution of

the joint REPDF equation corresponding to a nonlinear stochastic dynamical system

subject to colored noise. Section 3.1 presents the overall numerical method that

consists of two schemes discretizing the response space and the excitation space. In

section 3.1.1, we develop the adaptive discontinuous Galerkin method corresponding

to the response space. The adaptive strategies are based on local variance, boundary

flux difference, and a concentration of sample points in phase space. In section

3.1.2, we employ the probabilistic collocation method for the excitation dimensions

possibly combined with sparse grid. The effectiveness of the proposed algorithms is

demonstrated in the numerical applications of nonlinear oscillator problems involving

colored noise that is presented in section 3.2.

3.1 Numerical method

It is convenient to group the independent variables appearing in solution to joint

REPDF equation (2.3.3) into two main classes, i.e., those belonging to the response

50
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space and those belonging to the excitation space. The response space is a subset

of Rn that includes the phase variables a. These variables are differentiated in the

PDF equation (2.3.3). On the other hand, the excitation space is a subset of Rm

that includes the variables b, which appear simply as parameters in (2.3.3). Different

numerical techniques are described hereafter for the discretization of the response

and the excitation spaces.

3.1.1 Adaptive Discontinuous Galerkin method for the re-

sponse space

The response space can be discretized by using an adaptive discontinuous Galerkin

method [38, 39], possibly combined with functional ANOVA techniques [25]. As is

well known, the DG method has many good features of both finite volume and finite

element methods, such as flexibility and hp-adaptivity.

Discontinuous Galerkin (DG) formulation

In order to illustrate the application of the DG method to the joint REPDF equation

(2.3.3), let us rewrite it in the form of hyperbolic conservation law, i.e.

∂p
(a,b)
x(t)ξ

∂t
= −∇a ·

(
G(a, b, t)p

(a,b)
x(t)ξ

)
, (3.1.1)

where ∇a denotes the multi-dimensional gradient operator with respect to the vari-

ables a ∈ Rn. It is convenient at this point to define the multi-dimensional flux

F [p]
def
= G(a, b, t)p

(a,b)
x(t)ξ , (3.1.2)

where we have emphasized the functional dependence on p
(a,b)
x(t)ξ by using the notation

F [p]. Next, we consider a finite element discretization of the response space, i.e. the
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phase space described by the variables a ∈ Rn. Specifically, we select a bounded

computational domain Ω ⊆ Rn, which is large enough to include the support of the

joint REPDF p
(a,b)
x(t)ξ. This allows us to set zero homogeneous boundary condition

at the boundary of Ω. Let Ωh be a triangulation of Ω, consisting of elements Ki

(i = 1, ..., Nel), i.e.

Ω =

Nel⋃

i=1

Ki , Ki ∈ Ωh . (3.1.3)

We look for a solution to (3.1.1) in the finite element space

Vh def
= {v ∈ L2(Ω) : v|Ki

∈ Hp(Ki), ∀Ki ∈ Ωh} . (3.1.4)

Here Hp(Ki) denotes the space of polynomials of degree at most p in n variables

within the element Ki. Note that we are not imposing any continuity requirement

for the solution between adjacent elements. The finite-element solution to (3.1.1)

can be written as

p̂
(a,b)
x(t)ξ =

Nel∑

i=1

p̂i(a, b, t) , p̂i(a, b, t)
def
=

d∑

j=0

αj
Ki
(t, b)ψj

Ki
(a) , (3.1.5)

where d denotes the number of degrees of freedom within each element Ki, and

ψj
Ki
(a) ∈ Hp(Ki) (j = 1, .., d) is the set of basis functions in the element Ki. We

substitute (3.1.5) into (3.1.1) and impose that the residual is orthogonal to the finite

element space Vh. By using the simplified notation p̂ = p̂
(a,b)
x(t)ξ, this yields the following

element-wise Galerkin formulation

∫

Ki

q
∂p̂

∂t
da =

∫

Ki

∇aq · F [p̂]da−
∫

∂Ki

qF [p̂] · nidS , ∀q ∈ Hp(Ki) , (3.1.6)

where ni denotes the outward normal unit vector on the boundary ∂Ki. An im-

portant part of the solution process is the evaluation of the multidimensional flux
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F [p̂] through the element boundary ∂Ki, i.e. the computation of the last integral in

(3.1.6). Since we allowed discontinuous solutions across adjacent elements, the value

of F [p̂] is not unique on ∂Ki. Therefore, we replace F [p̂] with the numerical flux

F̃ [p̂−, p̂+], representing the information transferred through the boundary of adjacent

elements. The quantities p̂− and p̂+ here represent, respectively, the finite element

solution within the element Ki and the solution within the adjacent ones. Among

various schemes to compute the numerical flux F̃ [p̂−, p̂+], we consider here the Roe

scheme [163] (upwind flux), which is simple and is known to work well for advection

dominated equations. Such scheme can be explicitly written as,

F̃j[p̂−, p̂+] =





Fj [p̂−], ā ≥ 0

Fj [p̂+], ā < 0

, ā =
Fj [p̂+]− Fj [p̂−]

p̂+ − p̂−
.

where F̃j (j = 1, ..., n) denotes the component of the numerical flux along the direc-

tion aj.

Adaptivity

The solution to the joint REPDF equation (3.1.1) can be supported over a very

small region of the response phase space (see, e.g., Figure 1.1). In order to save

computational resources and resolve accurately such local dynamics, we propose an

adaptive algorithm that refines the computational grid where it is needed. Such

h-type refinement can be based both on error estimates involving local variances or

on particle methods. Hereafter, we discuss these two different approaches.

Adaptivity based on local variance and boundary flux difference The er-

ror estimate presented in [102] for the DG discretization of the advection equation

suggests that the error depends on the derivative of the solution as well on the am-



54

Figure 3.1: Mesh refinement in one- and two-dimensional phase spaces.

plitude of its jump at the element boundaries. This observation led us to develop a

new adaptive criterion based on the boundary flux difference and the element-wise

variance of the PDF.

The basic idea of the variance criterion [203] is to split the finite element Ki

whenever the following inequality is satisfied

σKi
JKi
≥ θ1 . (3.1.7)

Here σKi
denotes the local standard deviation of the PDF in the element Ki while

JKi
is the relative element size. The threshold θ1 can be selected appropriately, for

example with reference to the standard deviation of the PDF at the initial time. The

procedure is illustrated in Figure 3.1 for finite elements in one and two dimensions,

and it usually yields non-conforming grids such as those in Figure 3.8. In addition

to the variance criterion, which is known to be insufficient for advection dominated

equations [157], we have implemented another constraint, namely, a boundary flux

difference controller ∫

∂Ki

|F [p̂−]− F [p̂+]| dS ≥ θ2, (3.1.8)

where we recall p̂− is the finite element solution in the element Ki while p̂+ is the

solution in the adjacent elements. If condition (3.1.8) is satisfied, then the element

is split as in Figure 3.1.

The inverse operation, i.e., the merging of neighborhood elements, is based on

the local variance criterion (3.1.7). In particular, we merge a group of elements with

common boundaries if the summation of the local variances is small enough, i.e., less
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or equal than a threshold θ3.

Adaptivity based on sample paths An alternative criterion to refine the com-

putational mesh in the phase space may be based on the analysis of a few sample

trajectories of the stochastic dynamical system (2.3.1). The key idea is the following.

We first sample a small ensemble of possible states of the system at time t according

to the marginalized PDF

p
(a)
x(t) =

∫

Rm

p
(a,b)
x(t)ξdb . (3.1.9)

Then we evolve these states in time by integrating the system (2.3.1). Based on the

analysis of the trajectories and on the concentration of samples in the phase space,

we refine the computational mesh. The adaptive criterion is based on the relative

number of samples within each finite element. If such number exceeds a prescribed

threshold value θ4 then the element is split as in Figure (3.1). A similar criterion is

used to merge neighborhood elements. Once the adapted mesh has been identified,

we interpolate the finite element solution (3.1.5) on the new mesh and solve the PDF

equation (3.1.1) within the considered period of time. This procedure is illustrated

in Figure 3.4, with reference to the dynamics of a stochastic nonlinear pendulum.

Validation of the variance/flux difference adaptive criterion Let us con-

sider the one-dimensional stochastic “decay” problem

∂x (t;ω)

∂t
= −x (t;ω) + sin(t) + ξ(ω) x (0;ω) = x0(ω), (3.1.10)

where ξ(ω) and η(ω) are zero-mean independent Gaussian random variables, both

with variance 1/10. The evolution equation for the joint REPDF (3.1.1) in this case
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reduces to

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a

[
(−a + sin(t) + b) p

(a,b)
x(t)ξ

]
, t ≥ 0, a, b ∈ R, (3.1.11)

with initial condition

p
(a,b)
x(0)ξ = p(a)x0

p
(b)
ξ =

5

π
e−5(a2+b2) . (3.1.12)

The analytical solution to (3.1.11)-(3.1.12) can be obtained by using the method of

characteristics [158], as

p
(a,b)
x(t)ξ =

5et

π
e−5[α̂(a,b,t)2+b2] ,

where

α̂(a, b, t)
def
= et(a− b) + b− 1

2

[
1 + et(sin(t)− cos(t))

]
. (3.1.13)

Next, we consider the numerical simulation of (3.1.11) by using the proposed

adaptive DG numerical scheme. The computational domain for the response variable

a is chosen as Ω = [−1, 1] while the excitation variable b is assumed to be in R. Also,

the finite element space (3.1.4) is defined in terms of Legendre polynomials while

a Gauss-Hermite collocation method with q points is considered for the variable

b1. The time integration follows a fourth-order Runge-Kutta scheme with time step

∆t = 10−3. In Figure 3.2 we show the the numerically computed response probability

of the system at different times together with the corresponding adapted mesh. In

order to examine the accuracy of the DG solution relatively to the analytical solution

(3.1.1), we consider two different types of errors, namely, the absolute error

e1(a, t) =
def
=
∣∣∣p(a)x(t) − p̂

(a)
x(t)

∣∣∣ (3.1.14)

1Thus, the total number degrees of freedom of the system is Nel(p+1)q, where Nel denotes the
number of finite elements in Ω.
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Table 3.1: Number of elements at t = 1 by using the variance (DG-V) and the
variance/flux difference (DG-VF) adaptivity criteria. Shown are results for different
polynomial orders p.

p 3 4 5 6
DG-V 37 37 37 37
DG-VF 62 49 41 41

and the mean-squared error

e2(t)
def
=

[∫ 1

−1

(
p
(a)
x(t) − p̂

(a)
x(t)

)2
da

]1/2
. (3.1.15)

These errors are exhibited in Figure 3.2 at t = 1, for the adaptive strategies based on

the local variance criterion (3.1.7) and the local variance/boundary flux difference cri-

terion (3.1.8). The threshold parameters are set as θ1 = 0.02, θ2 = 0.005/5max{p−3,0}

and θ3 = 0.001 in this specific example. As it can be seen in Figure 3.2 and Table

3.1 the local variance/boundary flux difference criterion performs substantially bet-

ter than the local variance criterion, without increasing significantly the number of

elements.

3.1.2 Probabilistic Collocation method for the excitation

space

In most applications, we are interested in the response PDF of the system, i.e. in

the multi-dimensional integral

p
(a)
x(t) =

∫

Rm

p
(a,b)
x(t)ξdb , (3.1.16)

with respect to the parameters (b1, ..., bm). In order to compute such integral, we

use efficient cubature formulas with high polynomial exactness [60, 74, 130, 135]. In

practice, we sample equation (3.1.1) with respect to the parameters b at appropriate
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Figure 3.2: Time snapshots of the response probability of the decay problem as
computed by the proposed adaptive DG method (first row). In the second row
we plot the errors (3.1.14) and (3.1.15) between the DG solution and the analytical
solution at the final time t = 1. Shown are the results of different adaptive strategies:
DG-V (variance criterion), DG-VF (variance/flux difference criterion). We also show
p-type convergence of e2.



59

quadrature or sparse grid points and then compute an approximation to the integral

(3.1.16) in the form

∫

Rm

p
(a,b)
x(t)ξdb ≃

q∑

k=1

wkp
(a,bk)
x(t)ξ , bk = (bk1, ..., b

k
m) , (3.1.17)

where wk are quadrature weights.

3.2 Numerical results

In this section we present numerical applications of the proposed adaptive discontin-

uous Galerkin method to different prototype stochastic problems involving randomly

forced nonlinear oscillators.

3.2.1 Nonlinear Pendulum

We study the stochastic dynamics of a nonlinear pendulum subject to an external

random driving torque. A deterministic version of this problem has been studied in

the past as a prototype problem to understand routes to chaos (see, e.g., [13,44,73]).

In particular, we consider the following model equation

d2θ(t;ω)

dt2
+
dθ(t;ω)

dt
+ κ sin (θ(t;ω)) = h(t;ω) , (3.2.1)

where θ denotes the position of the pendulum, κ sin (θ) is the restoring torque, and

h(t;ω) is an external random driving torque with prescribed statistical properties.

Equation (3.2.1) can be written as a first-order system as





dx1(t;ω)

dt
= x2(t;ω) ,

dx2(t;ω)

dt
= −x2(t;ω)− κ sin (x1(t;ω)) + h(t;ω) ,

(3.2.2)
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Figure 3.3: (a) Sketch of pendulum, illustrating the mean initial position. In Figure
(b) and (c) we show the temporal dynamics of several sample paths of the position
and the velocity, respectively.

where x1(t;ω) = θ(t;ω) and x2(t;ω) = dθ(t;ω)/dt. We assume that we have available

a Karhunen-Loève representation external random torque in the form

h(t;ω) =
m∑

k=1

ξk(ω)hk(t), (3.2.3)

where {ξk(ω)} is a set of uncorrelated random variables with known joint prob-

ability density function, and hk(t) are unnormalized eigenfunctions of the au-

tocorrelation of h(t;ω). By using the method discussed in section 2.4, it is

straightforward to obtain the evolution equation for the joint PDF of the vector

{x1(t;ω), x2(t;ω)), ξ1(ω), ..., ξm(ω)}

p
(a,b)
x(t)ξ

def
= p

(a1,a2,b1,··· ,bm)
x1(t)x2(t)ξ1···ξm

= 〈δ(a1 − x1)δ(a2 − x2)
m∏

k=1

δ(bk − ξk)〉 , (3.2.4)

where the average is with respect to the joint PDF of {ξk(ω)} and the initial state

{x1(t0;ω), x2(t0;ω)}. The kinetic equation has the form (2.3.3) with

L(t) = −a2
∂

∂a1
+ I +

(
a2 + κ sin(a1)−

m∑

k=1

bkhk(t)

)
∂

∂a2
. (3.2.5)

In particular, let us consider here the simple case where the random torque h(t;ω)
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Figure 3.4: Sample phase plane of the pendulum at several time steps t and non-
conforming grid based on the entire sample path t ∈ [0, 2]. Shown are results for
different values of adaptive parameter θ4

depends only on one Gaussian random variable ξ1, i.e.,

h(t;ω) = ξ1(ω) sin(10t) . (3.2.6)

We set the parameter κ in (3.2.1) as κ = 40. This leads us to the PDF equation

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2p

(a,b)
x(t)ξ

)
+

∂

∂a2

(
[a2 + 40 sin(a1)− b1 sin(10t)] p(a,b)x(t)ξ

)
. (3.2.7)

The initial condition (x1(0;ω), x2(0;ω)) is assumed to be jointly Gaussian and inde-

pendent from the variable ξ1 in (3.2.6). Specifically, the joint PDF of x1 (position),

x2 (momentum) and ξ1 at the initial time t0 = 0 is set as

p
(a,b)
x(0)ξ =

4

3(2π)3/2
exp

[
−8
9

(
a1 −

4

5
π

)2

− 2a22 −
b21
2

]
. (3.2.8)

This system physically corresponds to a dissipative nonlinear pendulum dropped

from a random initial position near the unstable vertical one, with a random velocity.

Note that the mean initial position is not exactly vertical, but it is set at 〈x1〉 = 4π/5,

i.e. on the right semi-half of the circle (see the sketch in Figure 3.3(a)). Several

realizations of the time evolution of this system are shown in Figure 3.3(b)-(c). It is

seen that the pendulum never makes a complete rotation, but it simply falls to the
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lower vertical position through half-rotations and then it keeps oscillating around it

due to the sinusoidal driving torque. Specifically, the clockwise half-rotation leads to

oscillations near x1 = 0, while the counter-clockwise half-rotation leads to oscillations

near x1 = 2π. Although these two quasi-equilibrium configurations represent the

same physical state, they are reached through different paths, i.e. clockwise or

counter-clockwise rotations. Thus, the continuous ensemble of initial conditions is

split into two disjoint ensembles in a finite time. This leads to a particular type

of discontinuity in the probability space that cannot be resolved by using standard

polynomial chaos (see, e.g., [199]), or global probabilistic collocation. Extensions

such as ME-gPC [204] or ME-PCM [60] can resolve this discontinuity.

In Figure 1.1 we compare the DG results of the PDF equation (3.2.7) with several

time snapshots of the sample phase space. We have chosen polynomial order p = 5

for the response space elements, q = 9 collocation points for the excitation space,

and fourth-order Runge-Kutta scheme for the time integration, with time step ∆t =

5 · 10−4. The adapted nonconforming mesh shown in Figure 3.4 is generated by

using the adaptivity criterion based on sample paths discussed in section 3.1.1. The

threshold for the relative number of particles in each element is set to θ4 = 0.005 (see

Figure 3.4(a)). An analysis of Figure 1.1 shows that the symmetry of the system is

broken by setting the mean initial position of the pendulum to 〈x1(0, ω)〉 = 4π/5. In

fact, a larger portion of the phase space evolves towards the quasi-equilibrium state

through a clockwise rotation. In turn, this leads to a bi-modal probability density

function, with accumulation near x1 = 0, as demonstrated in Figure 3.5. The effects

of the adaptive threshold θ4 on the response PDF of the system are shown in Figure

3.6. It is seen that despite the robustness of the adaptive grid generation criterion,

a proper selection of the threshold parameter is necessary for accurate results.

We emphasize that the numerical simulation of the REPDF equation (3.2.7)

based on global expansion bases, such as Fourier spectral methods, would require a
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t = 0.1 t = 0.3 t = 0.5 t = 1.0

Figure 3.7: Evolution of the joint PDF of the position and the momentum of the
pendulum with uniform random coefficient (top) and exponentially correlated non-
Gaussian random forcing (bottom) at different times.

very high resolution to represent accurately the REPDF within the response domain

Ω = [−4/3π, 3π]× [−15, 17].

Non-Gaussian random coefficient and random forcing Non-Gaussian ran-

dom fields can be easily adopted in the REPDF approach. We consider two different

examples, using a non-Gaussian random coefficient and a non-Gaussian random field

as the forcing term. We first take κ(ω) as a uniform random variable on interval

[20, 30]. In addition, we choose h(t;ω) to be an exponentially correlated random field

expanded by using Karhunen-Loève series in terms of uniform random variables. We

note that the PDF of the superimposition of a finite number of independent uniform

random variables is quite complicated and the references can be found in [166]. Par-

ticularly, we take 〈h(t;ω)〉 = 5.0 and the covariance function as e−|t−s| (see [89] for

analytical expressions). In both cases, the uniform random variables are simulated

with 9 Legendre collocation points in each dimension and the computed solutions

are plotted in Figure 3.7 upto t = 1.0. Compared to the Gaussian example in Figure

1.1, the PDFs are less concentrated due to the larger variance of the uniform random

variables.
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3.2.2 Duffing oscillator

Many physically interesting phenomena involving nonlinear oscillations can be mod-

eled in terms of the stochastic Duffing equation





dx1(t;ω)

dt
= x2(t;ω)

dx2(t;ω)

dt
= −γx2(t;ω)− κx1(t;ω)− βx1(t;ω)3 + f(t;ω)

(3.2.9)

where f(t;ω) is a random forcing term. We assume that the initial condition of

the system (3.2.9) is jointly Gaussian with mean (µ1, µ2), variance (σ1, σ2) and cross

correlation σ12. From the point of view of modern dynamical systems theory [78],

the ensemble of solutions to Eq. (3.2.9) is very rich, and it has been subjected to

extensive analytical and numerical investigation [19, 50, 115, 217]. The statistical

properties of the random forcing term f(t;ω) also play a fundamental role in the

development of the stochastic dynamics. Hereafter we consider different examples

involving low dimensional as well as high-dimensional random forcing terms. In all

cases, the PDF equation is solved numerically by using the proposed spectral DG

method with element-wise polynomial order p = 4 in the response space, q = 15

collocation points in the excitation space, and fourth-order Runge-Kutta scheme for

the time integration2. The grid adaptivity is based on the local variance/boundary

flux difference criterion (see section 3.1.1) with parameters θ1 = 0.2min(σ1, σ2),

θ2 = 0.04, and θ3 = 0.001.

Stable oscillations and chaotic motion The ensemble of solutions to the Duff-

ing equation (3.2.9) includes stable oscillations and chaotic motion, depending on the

2The initial time step is set to ∆t = 10−3 and it is adaptively adjusted whenever it violates the
CFL condition [39],

∆t

∆a1

dF1

dp
+

∆t

∆a2

dF2

dp
<

1

2p+ 1
. (3.2.10)
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Figure 3.8: Time snapshots of the response PDF of the Duffing system and corre-
sponding adapted grids obtained by using the local variance/flux difference criterion.
Shown are also the effects of the correlation σ12 between the initial position x1 and
the momentum x2 of the oscillator: First row: σ12 = 0.0 (uncorrelated); Second row:
σ12 = 0.09 (correlated).

system parameters [19]. We first test our adaptive DG method on a stable manifold

of periodic states. To this end, we set the damping and the stiffness coefficients in

(3.2.9) and (3.2.15) to γ = 0.1, κ = 1.0 and β = 1.0 and consider a deterministic-

type forcing f(t) = D cos(t). This yields the following kinetic equation governing

the response PDF

∂p
(a)
x(t)

∂t
= − ∂

∂a1

(
a2 p

(a)
x(t)

)
− ∂

∂a2

([
−γa2 − κ a1 − βa31 +D cos(t)

]
p
(a)
x(t)

)
.

(3.2.11)

The initial condition is jointly Gaussian with parameters µ1,2 = 0.0, σ1,2 = 0.1, and

variable correlation σ12.

The time dynamics of the response PDF of the Duffing system is shown Figure

3.8 for initial conditions with different correlation coefficient and D = 0.2. We notice
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Figure 3.9: (a) Number of elements Nel generated by the variance/flux difference
adaptive criterion versus time. Shown are results obtained by using different thresh-
olds θ1 and θ2 and a jointly Gaussian initial PDF with correlation σ12 = 0.09 (see
Figure 3.8). (b) Effects of the thresholds on the PDF of x1(t;ω) at time t = 5.

that the dynamics corresponding to uncorrelated initial state remains smooth and it

follows a stable oscillating motion. On the contrary, the dynamics corresponding to

a correlated initial state becomes steeper and skewer as time goes on. The adapted

grids generated by the variance/flux difference criterion correctly follow the peak

locations of the PDF, allowing us to resolve the dynamics accurately at a reasonable

computational cost. The number of non-conforming finite elements produced by the

variance/flux difference adaptive procedure is shown in Figure 3.9 versus time for

different choices of θ1 and θ2. In the same figure we also exhibit the effects of such

thresholds on the PDF of x1(t;ω) at time t = 5. It is seen that, differently from

the sample-path based adaptive technique previously discussed, the variance/flux

difference procedure is not very sensitive to the selection of the threshold parameters.

We remark that if we would have used uniform grids, the number of elements

would be from four to twenty times higher than ours, at a comparable level of ac-

curacy. Next, we consider more complicated stochastic dynamics, such as chaotic

motions. To this end, we set κ = 0.0, γ = 0.1, β = 0.1 in (3.2.9) and (3.2.11). It is

known that this system undergoes several transitions as a function of the parameter

D (amplitude of the forcing). In particular, the phase diagrams obtained by Bonatto

et al. in [19] clearly show that within the range D ∈ [0, 6] we have solutions with
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D = 1 D = 2 D = 6

Figure 3.10: Route to chaos in the response PDF of the Duffing oscillator when
the amplitude of D the forcing is increased in (3.2.15) from D = 1 (system with
negative Lyapunov exponent) to D = 6 (system with positive Lyapunov exponent).
Shown are time snapshots of the response PDF evolving from a jointly Gaussian and
uncorrelated initial state.

negative Lyapunov exponents (regular) as well as solutions with positive Lyapunov

exponents (chaotic). This is demonstrated in Figure 3.10, where we show the time

snapshots of the response PDF of the system for different values of D. It is seen that

the dynamics of the PDF, which is accurately captured by the proposed adaptive

DG method, gradually loses its regularity when D is increased from 1 to 6.

This onset of chaos at D ≃ 5 can be also appreciated in Figure 3.11 where we

plot the evolution the joint REPDF obtained by marginalizing the solution to the

kinetic equation

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2 p

(a,b)
x(t)ξ

)
− ∂

∂a2

([
−γa2 − κ a1 − βa31 + b1 cos(t)

]
p
(a,b)
x(t)ξ

)
,

(3.2.12)

with respect to a2. This equation corresponds to a random forcing in the form

f(t;ω) = ξ(ω) cos(t) where ξ(ω) is a uniform random variable in [0, 6]. The results

of Figure 3.11 shows that at t = 7 the joint REPDF is scattered within the region

b1 ∈ [5, 6]. This indicates a possible chaotic scenario which is consistent with the

phase diagrams obtained in [19].
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Figure 3.11: Joint REPDF of x(t;ω) and ξ(ω) (random amplitude of the forcing)
at different times. The onset of chaos ξ(ω) ≃ 5 and the chaotic region ξ(ω) ∈ [5, 6]
can be appreciated at time t = 7, where the PDF is scattered within the region
b1 ∈ [5, 6].

Colored random noise We address here the question of whether the joint

response-excitation approach can provide an effective computational tool to sim-

ulate the effects of colored random noise in physical systems. To this end, we model

the forcing term in Eq. (3.2.9) as an exponentially correlated Gaussian random

process satisfying

〈f(t;ω)〉 = 0, 〈f(t;ω)f(s;ω)〉 = D

τ
e−

|t−s|
τ . (3.2.13)

where D > 0 denotes the amplitude of the noise. The autocorrelation of f can be

made arbitrarily close to a Dirac delta function by sending the correlation time τ to

zero3. We expand the process f(t;ω) in a finite-dimensional Karhunen-Loève series

as

f(t;ω) =

(
D

τ

)1/2 m∑

k=1

√
λkek(t)ξk(ω), t ∈ [0, T ], (3.2.14)

where ξk(ω) are uncorrelated normal random variables, while λk and ek(t) are, respec-

tively, the eigenvalues and the eigenfunctions of the exponential correlation function

exp(−|t− t′|/τ) (see [89] for analytical expressions).

3In fact, exp(−|t − t′|τ)/τ is an element of a delta sequence [96], converging to 2δ(t − t′) as
τ → 0.
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Table 3.2: Effects of the correlation time τ on the dimensionality of the Karhunen-
Loève series (3.2.14). The energy cutoff is set at the 95% of the total energy of the
process.

τ 50.0 5.0 2.0 1.0 0.5 0.1 0.01
m 1 5 9 13 25 48 57

The effects of the correlation time τ on the dimensionality m of the Karhunen-

Loève series (3.2.14) are reported in Table 3.2. It is seen that processes with small

correlation time are high-dimensional, i.e. they depend on many random variables.

As a consequence, the kinetic equation for the joint REPDF of the system can be

high-dimensional as well. In fact, we obtain

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2 p

(a,b)
x(t)ξ

)
− ∂

∂a2

([
−γa2 − κ a1 − βa31 +

m∑

k=1

fk(t)bk

]
p
(a,b)
x(t)ξ

)
,

(3.2.15)

where we have defined

fk(t)
def
=

(
Dλk
τ

)1/2

ek(t) . (3.2.16)

Equation (3.2.15) is a linear transport PDE in two phase variables (a1, a2) and m

parameters (b1, ..., bm), i.e. its solution at time t lies in an (m + 2)-dimensional

manifold.

White and weakly colored Gaussian random noise In the limit of zero corre-

lation time τ , the exponentially correlated Gaussian random process (3.2.14) becomes

Gaussian white noise of magnitude
√
2D. In this case the dynamics of the response

PDF of the system is governed by the Fokker-Planck equation [161]:

∂p
(a)
x(t)

∂t
= − ∂

∂a1

(
a2p

(a)
x(t)

)
− ∂

∂a2

(
g(a1, a2)p

(a)
x(t)

)
+D

∂2p
(a)
x(t)

∂a22
, (3.2.17)
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where g(a1, a2)
def
= −γa2− κa1− βa31. The second-order diffusion term is induced by

the white noise forcing. A similar theory holds for weakly colored Gaussian random

noise, In fact, by using the small correlation time approximation of the Furutsu-

Novikov relation [62, 83, 84, 196], it is possible to obtain

∂p
(a)
x(t)

∂t
= − ∂

∂a1

[
a2 p

(a)
x(t)

]
− ∂

∂a2

[
g(a1, a2)p

(a)
x(t)

]
(3.2.18)

+
∂2

∂a2∂a1

[
D√
ρ

(
1− e(Λ1−1/τ)t

1− Λ1τ
− 1− e(Λ2−1/τ)t

1− Λ2τ

)
p
(a)
x(t)

]

+
∂2

∂a22

[
D√
ρ

(
Λ1(1− e(Λ1−1/τ)t)

1− Λ1τ
− Λ2(1− e(Λ2−1/τ)t)

1− Λ2τ

)
p
(a)
x(t)

]
,

where

ρ
def
= γ2 + 4(κ+ 3βa21) , Λ1

def
=
−γ +

√
ρ

2
, Λ2

def
=
−γ −√ρ

2
. (3.2.19)

The kinetic equation (3.2.18) holds for exponentially correlated Gaussian random

forcing terms with very small correlation time τ , and it can be considered as a

first-order correction to the Fokker-Planck equation (3.2.17), namely, the effective

Fokker-Planck (EFKP) equation.

The intermediate range of correlation times is unfortunately not easily accessible

by using correlation time-expansions. In fact, the numerical solution to the classical

EFKP equation (3.2.18) for the case τ = 1 becomes unstable after t ≥ 3, indicating

that τ = 1 is beyond the convergence radius of the small correlation time approxima-

tion. This leads us to investigate the consistency of the response-excitation approach

with the classical effective Fokker-Planck theory for weakly correlated random forc-

ing. This is done in Figure 3.12 where we compare the mean and the standard

deviation of the solution to the Duffing equation driven by random noise with dif-

ferent correlation times τ . These statistical moments are obtained by integrating

the solution to the PDF equations (3.2.18) and (3.2.15). It is seen that for τ = 0.1
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Figure 3.12: Mean (a) and standard deviation (b) of the solution to Duffing system
for exponentially correlated Gaussian random forcing with different correlation times
τ . The statistical properties plotted in Figure (a) and (b) are obtained by computing
moments of the PDF solving the joint REPDF equation (3.2.15) and the effective
Fokker-Planck (EFPK) equation (3.2.18); the moments for τ = 0.1 agree to each
other.

τ = 2.0 τ = 1.0 τ = 0.1

Figure 3.13: Time snapshots of the response PDF of the Duffing system for random
noise with different correlation times τ . The initial condition in all cases is jointly
Gaussian with mean µ1,2 = 0.5.
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the response-excitation approach4 is consistent with the classical EFKP approach.

Moreover, we propose an appropriate approach to simulate the stochastic system

excited by different values of correlation time τ in Figure 3.14 and emphasize that

the REPDF approach enables us to simulate the whole range of correlation time.

The effects of τ on the temporal dynamics of response PDF are exhibited in Figure

3.13. It is seen that random noise with small correlation time (cases τ = 0.1 and

τ = 1.0) induces a diffusion phenomenon in the PDF. On the other hand, for larger

correlation times (case τ = 2), the diffusion seems to be absent, and the maximum

value of the response PDF increases in time.

3.3 Summary

In this chapter we have addressed the question of whether the joint REPDF approach

can provide an effective computational tool to simulate the effects of colored random

noise in dynamical systems. To this end, we have developed a non-conforming adap-

tive discontinuous Galerkin method for the joint REPDF equation governing the

dynamics of an arbitrary nonlinear system with parametric-type uncertainty. Such

generalized PDF equation can be high dimensional as it can arise, for example,

from a discretization of stochastic PDE subject to random boundary conditions,

random initial conditions or random forcing. We have proposed different techniques

to deal with high-dimensionality and possible discontinuities of the PDF solution

in the response-excitation space. In particular, we have combined sparse grid and

multi-element collocation approaches (excitation space) with a novel adaptive discon-

tinuous Galerkin method (response space). The effectiveness of the proposed new

algorithm has been demonstrated in two prototype applications dealing with the

statistical properties of the randomly forced nonlinear pendulum and the stochastic

4The dimensionality of the random forcing (3.2.14) is m = 13 for τ = 1.0 and m = 48 for τ = 0.1
(see Table 3.2). This means that the excitation space is 13 or 48-dimensional.



74

0

0.1

1

10

100

τ

Fokker-Planck (FPK)

Effective Fokker-Planck (EFPK)

Joint REPDF

Figure 3.14: The appropriate approach for different values of τ , where we emphasize
that the REPDF equation extends the classical PDF approaches and enables us to
simulate the whole range of correlation time.

Duffing oscillator. The same procedure can be readily extended to the joint REPDF

equations corresponding to first-order stochastic PDEs [194].



Chapter 4

High-dimensional numerical

methods for PDF equation

In this chapter, we address high-dimensionality of kinetic equations summarized in

Table 1.1 including the REPDF equation. We employ numerical techniques involving

high-dimension functional approximations. In section 4.1, we present two different

classes of new algorithms to solve high-dimensional REPDF equations, i.e., the sep-

arated series expansion method (section 4.1.1) and the ANOVA series expansion

method (section 4.1.2). A brief description of finite-dimensional representation of

the alternating-direction Galerkin algorithms is presented as well in section 4.1.1.

In section 4.2, we discuss the computational cost of these algorithms. Finally, we

apply the proposed new techniques to kinetic equations arising in stochastic partial

differential equations, namely, the random advection problems, in section 4.3.

75



76

4.1 Numerical Methods

4.1.1 Separated Series Expansions (SSE)

The method of separation of variables has been widely used to approximate high-

dimensional functions in terms of low-dimensional ones. In particular, let us consider

the following separated expansion of an N -dimensional probability density function

p(z1, · · · , zN) =
D∑

d=1

αdp
d
1(z1)p

d
2(z2) · · · pdN(zN) + ǫ(z1, · · · , zN), (4.1.1)

whereD is the separation rank, pdj are one-dimensional functions, and ǫ is the residual.

The total number of variables N in equation (4.1.1) is the sum of the phase variables

n and the number of parameters m appearing in the kinetic equation. Specific

examples will be given in section 4.3. The main advantage of using a representation

in the form (4.1.1) to solve a high-dimensional kinetic PDE relies on the fact that the

algorithms to compute pdj (zj) and the normalization factors αd involve operations

with one function at a time. Thus, in principle, the computational cost of such

algorithms grows linearly with respect to the dimension N , potentially avoiding the

curse of dimensionality.

For time-dependent PDEs, we can still look for solutions in the form (4.1.1),

where we simply add additional functions of the time variable in the separated series.

This approach has been considered by several authors, e.g., [2,33], and it was shown

to work well for problems dominated by diffusion. However, for complex transient

problems (e.g., hyperbolic dynamics), such approach is not practical as it requires

a high resolution in time domain. To address this issue, a discontinuous Galerkin

method in time was proposed by Nouy in [131]. The key idea is to split the integration

period into small intervals (finite elements in time) and then consider a space-time

separated representation of the solution within each interval. In this chapter we
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follow a different approach, based on explicit or implicit time-integration schemes.

In this case, the separated representation of the solution is computed at each time

step. Let us formulate the method with reference to a linear kinetic equation in the

form

∂p(z, t)

∂t
= L(z)p(z, t), (4.1.2)

where z = (z1, ..., zN ) is the vector of phase variables and L(z) is a linear operator.

For instance, in the case of the Fokker-Planck equation (see Table 1.1) we have m = 0

(i.e. N = n) and

L(z) = −
n∑

k=1

(
∂Gk(z)

∂zk
−Gk(z)

∂

∂zk

)
+

1

2

n∑

i,j=1

(
∂2bij(z)

∂zi∂zj
+ bij(z)

∂2

∂zi∂zj

)
.

The time-discrete version of (4.1.2) can be easily obtained by applying, e.g., the

Crank-Nicolson scheme. This yields

p(z, tj+1)− p(z, tj)
∆t

=
1

2
(L(z)p(z, tj+1) + L(z)p(z, tj)) , ∆t = tj+1 − tj ,

i.e.,

(
I − 1

2
∆tL(z)

)
p(z, tj+1) =

(
I +

1

2
∆tL(z)

)
p(z, tj). (4.1.3)

Assuming that p(z, tj) is known, (4.1.3) is a linear equation for p(z, tj+1) which can

be written concisely as1

A(z) p(z) = f(z), (4.1.4)

1Note that in equation (4.1.4) we have omitted the time-dependence in p(z, tj+1) for notational
convenience.
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where

A(z)
.
=

(
I − 1

2
∆tL(z)

)
, f(z)

.
=

(
I +

1

2
∆tL(z)

)
p(z, tj). (4.1.5)

The system operator A(z) and the right-hand-side f(z) are assumed to be separable

with respect to z, i.e.,

A(z) =

nA∑

k=1

Ak
1(z1) · · ·Ak

N(zN ), f(z) =

nf∑

k=1

fk
1 (z1) · · ·fk

N(zN ). (4.1.6)

Note that A(z) is separable if L(z) is separable. An example is the Liouville operator

associated with the Kraichnan-Orszag problem (see subsequent equations (5.2.9)-

(5.2.9) and (5.2.9))

L(z) = −z1z2
∂

∂z1
− z2z3

∂

∂z2
− (z22 − z21)

∂

∂z3
− (z2 + z3). (4.1.7)

More generally, systems with polynomial-type nonlinearities always yield separable

Liouvillians L(z), and therefore separable A(z). At this point, we look for a separated

representation of the solution to (4.1.4) in the form

pD(z) =

D∑

d=1

αdp
d
1(z1) · · ·pd

N(zN ), (4.1.8)

and we try to determine αd, p
d
j and the separation rank D based on the condition

∥∥A(z)pD(z)− f(z)
∥∥ ≤ ε, (4.1.9)

in an appropriately chosen norm, and for a prescribed target accuracy ε. This

problem does not admit a unique solution. In fact, there exist many possible choices

of αd, p
d
j (zj) and D that yield, in norm, the same target accuracy. Hence, different

approaches exist to compute pdj (zj) and αd. Hereafter, we focus our attention on
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alternating-direction Galerkin and least squares (ALS) methods.

Alternating Direction Algorithms

The basic idea of alternating direction methods is to construct the series expan-

sion (4.1.8) iteratively, by determining pd
j (zj) one at a time while freezing all other

functions. This yields a sequence of low-dimensional problems that can be solved

efficiently and in parallel [9, 10, 33, 108, 131, 133, 134]. To clarify how the method

works in simple terms, suppose we have constructed an approximated solution to

(4.1.4) in the form (4.1.8), i.e., suppose we have available pD(z). Then we look for

an enriched solution in the form

pD(z) + r1(z1) · · · rN (zN),

where {r1(z1), ..., rN(zN )} are N unknown functions to be determined. In the alter-

nating direction method, such functions are determined iteratively, one at a time.

Typical algorithms to perform such iterations are based on least squares,

min
rj

∥∥∥∥∥

nA∑

k=1

Ak
1 · · ·Ak

N

(
pD + r1 · · · rN

)
−

nf∑

k=1

fk
1 · · · fk

N

∥∥∥∥∥

2

, (4.1.10)

or Galerkin methods

〈
q,

nA∑

k=1

Ak
1 · · ·Ak

N

(
pD + r1 · · · rN

)
〉

=

〈
q,

nf∑

k=1

fk
1 · · ·fk

N

〉
, (4.1.11)

where 〈·〉 is an inner product (multi-dimensional integral with respect to z), and q

is a test function, often chosen as q(z) = r1(z1) · · · rN(zN ). In a finite-dimensional

setting, the minimization problem (4.1.10) reduces to the problem of finding the

minimum of a scalar function in as many variables as the number of unknowns

we consider in each basis function rj(zj), say qz. Similarly, the alternating-direction
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solution to (4.1.11) is based on the iterated solution to a sequence of low-dimensional

linear system of size qz× qz . Note that if A(z) in Eq. (4.1.4) is a nonlinear operator,

then we can still solve (4.1.10) or (4.1.11), e.g., by using Newton iterations. Once

the functions {r1(z1), ..., rN(zN)} are computed, they are normalized (yielding the

normalization factor αD+1) and added to pD(z) to obtain pD+1(z). The separation

rank is increased until (4.1.9) is satisfied for a desired target accuracy ε.

The enrichment procedure just described has been criticized in the literature due

to its slow convergence, in particular for equations dominated by advection [131].

Depending on the criterion used to construct the separated expansion, the enrichment

procedure might not even converge. Recent work, indeed, aimed at finding optimal

bases with granted convergence properties, i.e., bases that minimize the separation

rank and simultaneously keep the overall error (4.1.9) bounded by ε. For example,

Doostan and Iaccarino [47] proposed an alternating least-square (ALS) algorithm

that updates simultaneously the entire rank of the basis set in the j-th direction. In

this formulation, the least square approach (4.1.10) becomes

min
{p1j ,...,pDj }

∥∥∥∥∥

nA∑

k=1

Ak
1 · · ·Ak

N

(
D∑

d=1

αdp
d
1 · · ·pd

N

)
−

nf∑

k=1

fk
1 · · · fk

N

∥∥∥∥∥

2

.

The computational cost of this method clearly increases compared to (4.1.10). In

fact, in a finite dimensional setting, the simultaneous determination of
{
p1
j , ..., p

D
j

}

requires the solution of a Dqz×Dqz linear system, where qz is the number of degrees

of freedom for each pd
j (zj). However, this algorithm usually results in a separated

solution with a lower separation rank D than the regular approach.

Hereafter, we propose a new alternating direction Galerkin method that, as be-

fore, updates the entire rank of the basis set in the j-th phase variable simultaneously.
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To this end, we generalize the Galerkin formulation (4.1.11) to

〈
q,

nA∑

k=1

Ak
1 · · ·Ak

N

(
D∑

d=1

αdp
d
1 · · ·pd

N

)〉
=

〈
q,

nf∑

k=1

fk
1 · · · fk

N

〉
, (4.1.12)

where q(z) =
D∑

d=1

pd
1(z1) · · ·pd

N (zN). The finite-dimensional representation of (4.1.12)

is discussed in the following section.

Finite-Dimensional Representation of the Alternating Direction Algo-

rithm

In this appendix we provide additional details on the discretization of the alternating

direction Galerkin algorithm we proposed in section 4.1.1. To this end, let us first

represent the basis functions appearing in joint probability density (4.1.1) in terms

of polynomials as

pdn(zn) =

qz∑

j=1

pd
n,jφn,j(zn), (4.1.13)

where qz is the number of degrees of freedom in each variable. For example, in section

4.3.1, we have considered a spectral collocation method in which {φ1,j} and {φ2,j}

are trigonometric interpolants while {φn,j}Nn=3 are Lagrange interpolants through

Gauss-Legendre-Lobatto points. The vector

pd
n =

[
pd
n,1, · · · , pd

n,qz

]

collects the (normalized) values of the solution at the collocation points. In such col-

location framework, we can write the expansion (4.1.1) in terms of a tensor product

of degrees of freedom as

p =
∞∑

d=1

αdp
d
1 ⊗ · · · ⊗ pd

N . (4.1.14)
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Accordingly, the finite dimensional version of Eq. (4.1.4) is

Ap = f ,

where

A =

nA∑

k=1

Ak
1 ⊗ · · · ⊗Ak

N , f =

nf∑

k=1

fk1 ⊗ · · · ⊗ fkN , (4.1.15)

Ak
n[i, j] =

∫
φn,i(zn)A

k
n(zn)φn,j(zn) dzn, fkn [i] =

∫
fk
n(zn)φn,i(zn) dzn. (4.1.16)

By using a Gauss quadrature rule to evaluate the integrals, we obtain system matrices

Ak
n that either diagonal or coincide with the classical differentiation matrices of

spectral collocation methods [85]. For example, in the case of equation (4.3.3) we

have the components

A1
1[i, j] = wx[i]δij , Ak

1[i, j] =
∆t

2
wx[i]Dx[i, j], k = 2, ..., nA,

A1
2[i, j] = A2

2[i, j] = wz[i]δij , Ak+2
2 [i, j] =

sin(ktn+1)

2k
wz[i]δij , k = 1, ..., m,

Ak
3[i, j] = wb[i]δij , k 6= 3, A3

3[i, j] = wb[i]qb[i]δij , · · ·

where qb denotes the vector of collocation points, wx, wz, and wb are collocation

weights, Dx is the differentiation matrix, and δij is the Kronecker delta function. A

substitution of the finite-dimensional representations (4.1.14), (4.1.15) and (4.1.16)

into the Galerkin orthogonality conditions (4.1.12) yields a sequence of linear system

Bnp̂n = bn, (4.1.17)

where Bn is a block matrix with D × D blocks of size qz × qz, and bn is multi-

component vector. Specifically, the hv-th block of Bn and the h-th component of bn
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are obtained as

Bhv
n =

nA∑

k=1

(
N∏

i 6=n

[
ph
i

]T
Ak

i p
v
i

)
Ak

n, bh
n =

nf∑

k=1

(
N∏

i 6=n

[
ph
i

]T
fki

)
fkn .

The solution vector

p̂n =
[
p1
n, ...,p

D
n

]T

is normalized as pd
n/
∥∥pd

n

∥∥ for all d = 1, .., D and n = 1, ..., N . This operation yields

the coefficients α = (α1, ..., αD) in (4.1.14) as a solution to the linear systems

Dα = d, (4.1.18)

where the entries of the matrix D and the vector d are, respectively

Dhv =

nA∑

k=1

N∏

i=1

[
ph
i

]T
Ak

i p
v
n, dh =

nf∑

k=1

N∏

i=1

[
ph
i

]T
fki .

The main steps of the algorithm are summarized in Algrithm 1.

begin
Compute the separated representation of the initial condition p(t0) ;
for t1 ≤ ti ≤ tnT

do
Compute f by using p(ti−1);
Set D = 1 ;

while
∥∥ApD(ti)− f

∥∥ > ε do
Initialize

{
pD
1 (ti), ...,p

D
N(ti)

}
at random;

while
∥∥ApD(ti)− f

∥∥ does not decrease do
Solve Eq. (4.1.17) for 1 ≤ n ≤ N ;

end
Normalize the basis set and compute the coefficients {α1, ..., αD} ;
Set D = D + 1 ;

end

end

end
Algorithm 1: Main steps of the proposed alternating-direction Galerkin algo-
rithm.
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Stopping Criterion The stopping criterion for the alternating-direction algorithm

is based on the condition ‖ApD − f‖ < ε, which involve the computation of an

N -dimensional tensor norm. This can be quite expensive and compromise the com-

putational efficiency of the whole method. To avoid this problem, we replace the

condition ‖ApD − f‖ < ε with a simpler criterion for convergence, i.e.,

max

{∥∥p̃D
1 − pD

1

∥∥
‖pD

1 ‖
, ...,

∥∥p̃D
N − pD

N

∥∥
‖pD

N‖

}
≤ ε1, (4.1.19)

where
{
p̃D
1 , ..., p̃

D
N

}
denotes the solution at the previous iteration. Note that the

condition (4.1.19) involves the computation of N vector norms instead of one N -

dimensional tensor norm.

4.1.2 ANOVA Series Expansions

The ANOVA series expansion [25, 220] is another typical approach to model high-

dimensional functions. The series involves a superimposition of functions with an

increasing number of variables, and it is usually truncated at a certain interaction

order. Specifically, the ANOVA expansion of an N -dimensional PDF takes the from

[74]

p(z1, z2, ..., zN) = q0 +
N∑

i=1

qi(zi) +
N∑

i<j

qij(zi, zj) +
N∑

i<j<k

qijk(zi, zj, zk) + · · · .

(4.1.20)

The function q0 is a constant. The functions qi(zi), which we shall call first-order

interaction terms, give us the overall effects of the variables zi in p as if they were

acting independently of the other variables. The functions qij(zi, zj) describe the

interaction effects of the variables zi and zj , and therefore they will be called second-

order interactions. Similarly, higher-order terms reflect the cooperative effects of
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an increasing number of variables. The interaction terms qijk··· can be computed in

different ways [155, 226], e.g.,

q0 =

∫
p(z1, · · · , zN)dz1, · · ·dzN ,

qi(zi) =

∫
p(z1, · · · , zN)

N∏

k=1
k 6=i

dzk − q0,

qij(zi, zj) =

∫
p(z1, · · · , zN)

N∏

k=1
k 6=i,j

dzk − q0 − qi(zi)− qj(zj),

· · · .

By using the ANOVA expansion we can represent both the parametric dependence

as well as the dependence on phase variables in the solution to a kinetic equation.

In the first case, PCM-ANOVA methods with appropriate anchor points [61,68,192,

220, 227], can be readily applied. On the other hand, representing the dependence

of the solution PDF on the phase variables through the ANOVA expansion yields

a hierarchy of coupled PDF equations that resembles the Bogoliubov-Born-Green-

Kirkwood hierarchy of kinetic gas theory [26, 126]. We remark that the conditional

moment closures in section 5.2 features similar idea.

4.2 Computational Cost

Let us consider a kinetic partial differential equation with n phase variables and m

parameters, i.e., a total number of N = n+m variables. Suppose that we represent

the solution by using qz degrees of freedom2 (DOF) in each phase variable and qb

degrees of freedom in each parameter. Hereafter we compare the computational cost

of the tensor product, the separated series expansion and the ANOVA expansion

2In a spectral collocation setting, qz is the number of collocation in each phase variable.
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methods we discussed in previous sections.

Tensor Product (TP) Expansion

If we consider a tensor product (TP) representation, then the total number of DOF

is qnz × C(qb, m), where C(qb, m) is a function depending on the way we represent

the parametric dependence of the PDF solution. For example, if we consider tensor

product representation of the parameter space we have C(qb, m) = qmb . On the other

hand, if we use sparse grid or ANOVA expansions we have, respectively, a logarithmic

or a factorial growth of C(qb, m) with m. In a tensor product collocation setting,

at each time step we need to perform matrix-vector operations for the discretized

phase variables, i.e., we have O (q2nz ) operations. This number has to be multiplied

by C(qb, m), i.e., the number of samples we are taking in the parameter space.

Separated Series Expansion (SSE)

The total number of DOFs of the SSE method is D(nqz +mqb), i.e., it grows linearly

with both n and m (see Table 4.1). In particular, if the separation rank D is rela-

tively small then the separated expansion method is much more efficient than tensor

product, sparse grid or ANOVA approaches, both in terms of memory requirements

as well as in terms of computational cost. The alternating-direction algorithm at

the basis of the separated series expansion method can be divided into two steps,

i.e., the enrichment and the projection steps (see Table 1). For a separation rank d,

the number of operations to perform these steps is O(dq2z + (dqz)
3). Since we begin

from the first basis vector and gradually increase the separation rank, this cost has

to be summed up to d = 1, ..., D, and finally multiplied by the average number of

iterations nitr required to achieve the target accuracy ε. The computational cost

of the projection step can be neglected with respect to the one of the enrichment

step, as it reduces to solving a linear system of rather small size (D × D). Thus,
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DOF Computational Cost

TP qnz × C(qb, m) O (q2nz )× C(qb, m)

SSE D · (nqz +mqb) O (D4 · [nq3z +mq3b ]) · nitr

ANOVA qsz

(
n
s

)
× C(qb, m, s′) O (q2sz )

(
n
s

)
× C(qb, m, s′)

Table 4.1: Number of degrees of freedom (DOF) and computational cost of solving
kinetic equations by using different methods. Shown are results for Tensor Product
(TP), Separated Series Expansion (SSE) and ANOVA decomposition. In the Ta-
ble, n and m denote, respectively, the number of phase variables and the number of
parameters appearing in the kinetic equation. We are assuming that we are repre-
senting the PDF solution with qz degrees of freedom (DOF) in each phase variable
and qb degrees of freedom in each parameter. The function C(qb, m) depends on
the specific method we are using to represent the PDF solution, e.g., tensor product
collocation of sparse grid. Also, D is the separation rank and niter is the average
number of iterations required for convergence of the separated expansion. The quan-
tities s and s′ are, respectively, the interaction orders of the ANOVA expansion for
the phase variables and the parameters in the PDF solution.

the overall computational cost of the separated expansion method can be estimated

as O (D4 [nq3z +mq3b ]nitr), and it can be reduced to O (D3 [nq2z +mq2b ]nitr) by using

appropriate iterative linear solvers.

ANOVA Series Expansion

The number of DOFs of the ANOVA approach is qsz



n

s


×C(qb, m, s′), where s and

s′ are, respectively, the interaction orders of the ANOVA expansion for the phase

variables and the parameters of the PDF solution. We remark that C(qb, m, s
′) has a

factorial dependency onm and s′. The computational cost of ANOVA is summarized

in Table 4.1.
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4.3 Numerical Results

In this section we provide numerical examples to demonstrate the effectiveness of the

numerical methods we proposed in the chapter. To this end, we will consider kinetic

partial differential equations corresponding to stochastic PDEs as well as stochastic

dynamical systems.

4.3.1 Stochastic Advection of Scalar Fields

We consider the following two stochastic advection equations

∂u

∂t
+

(
1 +

m∑

k=1

1

2k
sin(kt)ξk(ω)

)
∂u

∂x
= 0, (4.3.1)

∂u

∂t
+
∂u

∂x
= sin(t)

m∑

k=1

1

5(k + 1)
sin((k + 1)x)ξk(ω), (4.3.2)

where x ∈ [0, 2π] and {ξ1, ..., ξm} are i.i.d. uniform random variables in [−1, 1]. As

we have shown in [194], the kinetic equations governing the joint probability density

function of {ξ1, ..., ξm} and the solution to (4.3.1) or (4.3.2) are, respectively,

∂p

∂t
+

(
1 +

m∑

k=1

1

2k
sin(kt)bk

)
∂p

∂x
= 0, (4.3.3)

∂p

∂t
+
∂p

∂x
= −

(
sin(t)

m∑

k=1

1

5(k + 1)
sin((k + 1)x)bk

)
∂p

∂z
, (4.3.4)

where p = p(x, t, z,b), b = {b1, ..., bm}. Note that this PDF depends on x, t, one

phase variable z (corresponding to u(x, t)) and m parameters b (corresponding to

{ξ1, ..., ξm}). The analytical solutions to Eqs. (4.3.3) and (4.3.4) can be obtained by

using the method of characteristics [158]. They are both in the form

p (x, t, z,b) = p0 (x−X(t,b), z − Z(x, t,b),b) , (4.3.5)
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where p0 (x, z, b) is the joint PDF of u(x, t0) and {ξ1, ..., ξm}, and

X(t,b) = t−
m∑

k=1

(cos(kt)− 1)bk
2k2

, Z(x, t,b) = 0

in the case of equation (4.3.3), and

X (t,b) = t, Z (x, t,b) =

m+1∑

k=2

bk−1

10k

(
sin(kx− t)
k − 1

− sin(kx+ t)

k + 1
− 2 sin(k(x− t))

(k − 1)(k + 1)

)

in the case of equation (4.3.4). In particular, in our simulations we set

p0(x, z,b) =

(
sin2(x)

2πσ1
exp

[
−(z − µ1)

2

2σ1

]
+

cos2(x)

2πσ2
exp

[
−(z − µ2)

2

2σ2

])
exp

[
−|b|

2

2

]
,

which has separation rank D = 2. Non-separable initial conditions can be approxi-

mated in terms of series expansions in the form (4.1.1).

Separated Series Expansion Solution

We computed the solution to (4.3.3) and (4.3.4) by using a separated series expansion

and the alternating-direction Galerkin method proposed in section 4.1.1. The series

is in the form

p(x, t, z,b) ≃
D∑

k=1

αk(t)p
x
k(x)p

z
k(z)r

1
k(b1) · · · rmk (bm), (4.3.6)

where the dependence on x and z is represented by using a Fourier spectral colloca-

tion method with qz = 50 degrees of freedom in each variable, while the parametric

dependence on bk (k = 1, .., m) is represented with Legendre polynomials of order

qb = 7. The series expansion (4.3.6) is computed at each time step (∆t = 10−2), up

to t = 3 by using the Crank-Nicolson scheme (4.1.4).

In Figure 4.1, we plot the first few modes pk(x, z) = pxk(x)p
z
k(z) of the solution
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SSE modes - Eq. (4.3.3)
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Figure 4.1: Stochastic Advection Problem: separated series expansion modes at
t = 2.

to Eqs. (4.3.3) and (4.3.4) with m = 54 and m = 3, respectively. In the case of

Eq. (4.3.3), pk(x, z) look very similar to each other for k ≥ 2, while in the case of

Eq. (4.3.4) they a are all different, suggesting the presence of modal interactions

and a larger separation rank to achieve a prescribed target accuracy. This is also

seen in Figure 4.2, where we plot the normalization coefficients {α1, ..., αD}. Since

αj can be interpreted as the spectrum of the separated PDF solution, we see that the

stochastic advection problem (4.3.2) yields a stronger coupling between the modes,

i.e., a slower spectral decay than the problem (4.3.1).

In Figure 4.3, we plot the PDF of the solution to Eq. (4.3.1). Such PDF is

obtained by first solving (4.3.3) by using the separated expansion method, and then

integrating (4.3.6) numerically with respect to {b1, ..., bm}. Convergence with respect
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Figure 4.2: Stochastic Advection Problem: Spectra of the separated series expansion
at t = 2.
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Figure 4.3: Stochastic advection problem (4.3.1): PDF of the solution at different
times. The PDF dynamics is obtained by solving (4.3.3) with a separated series
expansion. The separation rank is set to D = 8, and we consider m = 54 random
variables in (4.3.1).
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Figure 4.4: Stochastic advection problem (4.3.1): relative L2 errors of the separated
PDF solution (SSE) and the PCM-ANOVA solution (PCM-A, level 2) with respect
to the analytical solution (4.3.5). Shown are results at t = 0.5, t = 1 and t = 3 for
different separation ranks D and different number of random variables: m = 3 (a)
and m = 54 (b).

to D is demonstrated in Figure 4.4. Note that the separated expansion method

reaches the same error level as the PCM-ANOVA approximation with just five modes

for t ≤ 1, but it requires a larger separation rank at later times in order to keep the

same accuracy. In addition, the convergence rate of the separated expansion method

saturates with D due to time integration errors. In Figure 4.5, we show the PDF

of the solution to the advection problem (4.3.2) at different times, where we have

considered a random forcing term with m = 24 random variables. Such PDF is

obtained by solving (4.3.4) with a separated series expansion (4.3.6) of rank D = 8.

Convergence with respect to D is demonstrated in Figure (4.6). It is seen that the

convergence rate in this case is slower than in the previous example (see Figure 4.4),

and the overall relative error is larger. This is due to the presence of the time-

dependent forcing term in Eq. (4.3.2), which injects additional energy in the system

and yields new SSE modes (see Figure 4.1). This yields a higher separation rank for

a prescribed level of accuracy. In addition, the plots suggest that the accuracy of

the separated expansion method depends primarily on the separation rank D of the
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Figure 4.5: Stochastic advection problem (4.3.2): PDF of the solution at different
times. The PDF dynamics is obtained by solving (4.3.4) with a separated series
expansion. The separation rank is set to D = 8, and we consider m = 24 random
variables in (4.3.2).

solution rather than on the dimensionality of the random forcing vector.

Adaptive Alternating Least Squares (ALS) Algorithm So far, we fixed the

separation rank D throughout our simulations, to investigate convergence and accu-

racy of the separated series expansion method. However, in practical applications,

the appropriate separation rank should be identified on-the-fly, i.e., while the simu-

lation is running. To address this question, in this section, we propose an adaptive

strategy based on the spectrum α = {α1, ..., αD} of the separated series. The adap-

tive criterion is simple and effective:

• We increase the separation rank D if the ratio αD/α1 exceeds a threshold θ.

The corresponding adaptive algorithm initialized with a separation rank d is denoted

as Ad-SSE, and it is studied hereafter with reference to Eq. (4.3.4). In Figure

4.7 we plot D versus time for different thresholds θ. It is seen that the adaptive

algorithm yields a separation rank that increases in time. In particular, the case

θ = 10−3 yields D = 10 at t = 3, which results in a slightly larger error than the one

obtained for fixed D = 10. In Figure 4.8, we compare the accuracy of the A6-SSE

method with θ = 5 · 10−4 and the ANOVA method (level 2). Specifically, we study

the relative L2 error of the solution to Eq. (4.3.4) for different number of random
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Figure 4.6: Stochastic Advection Problem: Relative L2 errors of the separated PDF
solutions with respect to the analytical solution (4.3.5). Shown are results for differ-
ent number of random variables m in (4.3.1)-(4.3.2) and different separation ranks
D. It is seen that the accuracy of the separated expansion method mainly depends
on the separation rank rather than on the number of random variables.
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Figure 4.7: Adaptive ALS algorithm: separation rank D (a) and relative L2 error
(b) versus time for different thresholds θ. A small θ yields a large separation rank
and a small relative error.
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Figure 4.8: Adaptive ALS algorithm: comparison between the relative L2 errors of
the adaptive separated expansion method (A-SSE) and the PCM-ANOVA (PCM-A,
level 2) method. Results are for the kinetic equation (4.3.4) with ALS threshold
θ = 5 · 10−4. It is seen that the error of the A-SSE method is slightly independent of
m, while the error of PCM-ANOVA level 2 increases significantly as we increase m.

variables, i.e., m = 13, m = 24, and m = 54. We first notice that the error in

the A6-SSE method seems to be slightly independent of m. On the other hand, the

error of PCM-ANOVA method increases significantly with m, although such error

can be improved by increasing the interaction order. However, this would yield an

increasing number of collocation points. For example, increasing the interaction

order from two to three in this case would increase the number of collocation points

from 70498 to 8578270 (see [220]). Hence, the separated series expansion method is

preferable to the ANOVA approximation in this case. In Figure 4.9, we compare the

computational time of the separated series expansion method with PCM-ANOVA of

level two and sparse grid collocation of level three. The simulations are performed

on a single CPU of Intel Xeon E5540 (2.53 GHz) and the results are normalized with

respect to the computing time of the classical PCM for the case m = 3. It is seen

that the separated expansion method method costs less than the PCM-ANOVA level

2 when m ≥ 24 and D ≤ 8. In the case of equation (4.3.3), the separated expansion

method is more efficient than ANOVA, as it reaches the same error level with a small

separation rank (D < 8).
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Figure 4.9: Computational time (in seconds) of the separated expansion method
(SSE), PCM-ANOVA level 2 (PCM-A), and sparse grid level 3 (PCM-S) as a func-
tion of the number of random variables m and separation rank D. The results are
normalized with respect to the computing time of PCM with m = 3. The dotted
lines correspond to extrapolations based on short-runs estimates.

In summary, the separated series expansion method is effective for high-

dimensional kinetic equations provided the solution has a small separation rank.

If the separation rank is relatively large, then the ANOVA method is expected to be

more efficient, although a rigorous quantification of this statement should be done

on a case-by-case basis.

4.4 Summary

In this chapter we proposed and validated three different classes of new algorithms to

compute the numerical solution of high-dimensional kinetic partial differential equa-

tions. The first class of algorithms is based on separated series expansions (SSE)

and it yields a sequence of low-dimensional problems that can be solved recursively

and in parallel by using alternating direction methods. In particular, we developed

a new algorithm that updates the entire rank of the separated representation in each

variable, minimizing separation rank and improving the convergence rate. We also

proposed an adaptive version of such algorithm and we demonstrated its effectiveness
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in numerical applications to random advection of passive scalar fields. The second

class of algorithms relies on high-dimensional model representations (ANOVA ex-

pansions) and probabilistic (sparse) collocation methods. A common feature of all

these methods is that they allow us to reduce the problem of computing the solution

to high-dimensional kinetic equations to a sequence of low-dimensional problems.

The range of applicability of proposed new algorithms is sketched in Figure 1.2 as

a function of the number of phase variables n and the number of parameters m

appearing in the kinetic equation. Both ANOVA and SSE scale linearly with the

dimension of the phase space, and they yield comparable results for moderate sepa-

ration ranks. For large separation ranks the ANOVA method is preferable to SSE in

terms of computational cost. The choice between ANOVA and SSE does not depend

on the number of variables in the kinetic equation but rather on the properties of its

solution, in particular the separation rank.



Chapter 5

Dimension reduction techniques

for PDF equation

In this chapter, we propose two different approaches to obtain reduced-order PDF

equations. In section 5.1, we introduce the Mori-Zwanzig (MZ) projection opera-

tor framework that is based on operator cumulant resummation and perturbation

methods. The reduced-order equations are derived in section 5.1.1 followed by an

application to the joint REPDF of the stochastic Burgers equation in section 5.1.2.

Stochastic simulations of the Burgers problem are presented in section 5.1.3 involv-

ing interesting observation of the shock development and clustering. In section 5.2,

we present the conditional moment closure approach that relies on deriving a hier-

archy of coupled PDF equations. Section 5.2.1 includes numerical application of the

proposed closure scheme to PDF equations arising in nonlinear stochastic dynamical

systems. Finally, we address the probability density approach to solve second-order

stochastic PDEs in section 5.2.2.

98
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5.1 Mori-Zwanzig Approach

5.1.1 MZ-PDF Equations by operator cumulants

Let us set ν = 0 in the PDF equation (5.1.34) and rewrite it in a Liouville-type form

as

∂p(t)

∂t
= [L0 + σL1(t)] p(t), (5.1.1)

where

L0
def
= −

∫ a

−∞

da′
∂

∂x
− a ∂

∂x
, L1(t)

def
= −f(x, t; b) ∂

∂a
. (5.1.2)

Since L0 is a time-independent linear operator, it is convenient to integrate out

exactly the dynamics associated with it first, so as to circumscribe the approximation

problem to L1(t). This can be carried out by means of a preliminary time-dependent

transformation

w(t) = e−tL0p(t), (5.1.3)

which is known as interaction picture in quantum mechanics. Substituting (5.1.3)

into Eq. (5.1.1) yields

dw(t)

dt
= σN (t)w(t), N (t)

def
= e−tL0L1(t)e

tL0 . (5.1.4)

Note that L0 depends only on the phase variable a, representing the velocity field,

but not on the phase variables b associated with the random forcing term. This

implies that the PDF of u(x, t;ω) can be, in principle, obtained by inverting Eq.

(5.1.3) and then integrating it with respect to b. This operation can be conveniently

represented in terms of an orthogonal projection operator

Pp(t) def
= q(b)

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(t)db, (5.1.5)
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where q(b) denotes the joint PDF of the random vector ξ appearing in the forcing

term. Note that P2 = P and that PL0 = L0P, i.e., P commutes with L0. In

addition, integration of Eq. (5.1.5) with respect to b yields pu(t), that is the one-

point one-time PDF of the velocity field that solves Eq. (5.1.27) in the inviscid

limit. If we apply P to both sides of Eq. (5.1.3), differentiate it with respect to t,

and integrate with respect to b we obtain

∂pu(t)

∂t
= L0pu(t) + etL0

∫ ∞

−∞

· · ·
∫ ∞

−∞

∂Pw(t)
∂t

db. (5.1.6)

The next step is to determine the law for ∂Pw(t)/∂t. This can be done in a formally

exact way by using the Mori-Zwanzig formalism, in particular the convolutionless

form [23, 28, 195]. This yields

∂Pw(t)
∂t

= K̂(t)Pw(t) + Ĥ(t)Qw(0), (5.1.7)

where Q def
= I − P,

K̂(t) def
=σPN (t)[I − σΣ̂(t)]−1, (5.1.8)

Ĥ(t) def
=σPN (t)[I − σΣ̂(t)]−1Ĝ(t, 0), (5.1.9)

and

Σ̂(t)
def
=

∫ t

0

Ĝ(t, s)QN (s)PẐ(t, s)ds, (5.1.10)

Ĝ(t, s) def
=
←−T exp

[
σ

∫ t

s

QN (τ)dτ

]
, Ẑ(t, s) def

=
−→T exp

[
−σ
∫ t

s

N (τ)dτ

]
.

(5.1.11)

In Eq. (5.1.11),
←−T and

−→T denote, respectively, the chronological and the anti-

chronological time-ordering operators. If the joint PDF p(0) = w(0) is separable,

i.e., if the initial condition u(x, 0;η) is independent of the random excitation vector
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ξ, then w(0) is in the range of P and we have Qw(0) = 0 in Eq. (5.1.7). In the

following we will consider such case.

So far everything that has been said is exact and it led us to Eqs. (5.1.6) and

(5.1.7), which are linear and of infinite order in the phase variable a. We now

introduce approximations. To this end, we expand the right hand side of Eq.

(5.1.7) in formal power series in the coupling parameter σ (see [195] for details).

This yields

∂Pw(t)
∂t

=

(
σN (t) + σ2

∫ t

0

[PN (t)N (s)− PN (t)PN (s)] ds+ · · ·
)
Pw(t).

(5.1.12)

Substituting (5.1.12) into Eq. (5.1.6) gives the reduced order kinetic equation

∂pu(t)

∂t
= L0pu(t) + etL0

(
σ 〈N (t)〉K + σ2

∫ t

0

〈N (t)N (s)〉K ds+ · · ·
)
e−tL0pu(t),

(5.1.13)

where 〈N (t) · · ·N (tn)〉K are Kubo-Van Kampen operator cumulants [94,95,195] rel-

ative to the joint PDF of the random vector ξ. For instance, the first two cumulants

are

〈N (t)〉K =

∫ ∞

−∞

· · ·
∫ ∞

−∞

N (t)q(b)db, (5.1.14)

〈N (t)N (s)〉K =

∫ ∞

−∞

· · ·
∫ ∞

−∞

[N (t)N (s)q(b)−N (t)q(b)N (s)q(b)]db, (5.1.15)

each one being a linear operator in the phase variables a and x. The n-th order op-

erator cumulant 〈N (t1) · · ·N (tn)〉K can be calculated by using diagrammatic meth-

ods [94]. The reduced-order kinetic equation (5.1.13) is linear, formally exact, but it

involves derivatives of infinite-order in both variables x and a. Such derivatives come

from the operator cumulants as well as from the exponential operators appearing in

Eqs. (5.1.4) and (5.1.13). In a finite-dimensional setting, these quantities can be com-
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puted by using efficient numerical algorithms, e.g., based on scaling-squaring tech-

niques, Padé approximants, or Krylov subspace projection methods [1, 52, 123, 184].

Any finite-order truncation of the series within the brackets in Eq. (5.1.13) yields an

approximation whose accuracy depends on the magnitude of σ, the integration time

t, as well as on the the decay rate of the Kubo-Van Kampen operator cumulants

〈N (t1) · · ·N (tn)〉K . The latter depends on the properties of the random forcing. For

example, in Langevin systems forced with Gaussian white noise it can be shown that

the approximation obtained by retaining only the first two operator cumulants is

exact for arbitrary σ (see [195]).

We remark that the kinetic equation (5.1.13) can be derived also by using the

asymptotic perturbation theory of semigroups [55,99]. The simplest way to do so is

to consider the formal (implicit) solution to Eq. (5.1.1)

p(t) = etL0p(0) + σ

∫ t

0

e(t−s)L0L1(s)p(s)ds, (5.1.16)

and generate a sequence of approximations by recursive substitution, starting from

p(0). This yields

p(t) =

[
eL0(t)p(0) + σ

∫ t

0

e(t−s)L0L1(s)e
sL0ds+

σ2

∫ t

0

∫ s

0

eL0(t−s)L1(s)e
(s−z)L0L1(z)e

zL0dzds

]
p(0) +O(σ3). (5.1.17)

Assuming that p(0) is separable as p(0) = pu(0)q(b), integrating Eq. (5.1.17) with

respect to b yields the second-order approximation to the formal analytical solution

to Eq. (5.1.13), i.e.,

pu(t) =

[
eL0(t)pu(0) + σ

∫ t

0

e(t−s)L0 〈L1(s)〉b esL0ds+

σ2

∫ t

0

∫ s

0

eL0(t−s)
〈
L1(s)e

(s−z)L0L1(z)
〉
b
ezL0dzds

]
pu(0) +O(σ3), (5.1.18)
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where

〈·〉b
def
=

∫ ∞

−∞

· · ·
∫ ∞

−∞

(·)q(b)db. (5.1.19)

An interesting subcase of Eqs. (5.1.6) and (5.1.18) is obtained by assuming that the

random forcing does not depend on x. This yields the simplified kinetic equation

∂pu(t)

∂t
= L0pu(t) + σ 〈f(t; b)〉b

∂pu(t)

∂a
+ σ2

∫ t

0

(
e(t−s)L0C(t, s)

∂2pu(s)

∂a2
−

(t− s)e(t−s)L0 〈f(t; b)f(s; b)〉b
∂2pu(s)

∂x∂a

)
ds+ O(σ3), (5.1.20)

where C(t, s) is the temporal covariance of f(t; ξ). Eq. (5.1.20) is obtained by

differentiating Eq. (5.1.18) with respect to time and noting that

L1(t)e
(s−u)L0 =

∞∑

n=0

1

n!
L1(t)Ln

0 (s− u)n

=
∞∑

n=0

1

n!

(
Ln

0L1(t)− nLn−1
0 f(t; b)

∂

∂x

)
(s− u)n

= e(s−u)L0L1(t)− (s− u)e(s−u)L0f(t; b)
∂

∂x
.

Let us consider the two-point joint response-excitation PDF, i.e., the joint PDF

of u(x1, t;ω), u(x2, t;ω) and ξ,

p2(x1, x2, t; a1, a2, b) =

∫∫ 2∏

i=1

δ(ai − U(xi, t;A0,B))δ(b−B)q(A0,B)dA0dB.

(5.1.21)

Such PDF satisfies the obvious limiting condition

lim
x1→x2

p2(x1, x2, t; a1, a2, b) = δ(a1 − a2)p(x1, t; a1, b), (5.1.22)

where p(x1, t; a1, b) is the one-point PDF (5.1.30). It can be shown (see, e.g., [194,

197]) that in the inviscid limit ν → 0, the PDF (5.1.21) satisfies the exact kinetic
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equation

∂p2(t)

∂t
= [H0 + σH1(t)] p2(t), (5.1.23)

where

H0
def
= −

2∑

i=1

(∫ ai

−∞

da′i
∂

∂xi
+ ai

∂

∂xi

)
, H1(t)

def
= −

2∑

i=1

f(xi, t; b)
∂

∂ai
. (5.1.24)

By following the same mathematical steps that led us to Eq. (5.1.13), we obtain the

following reduced-order kinetic equation for the two-point PDF of the solution field1

∂puu′(t)

∂t
≃ H0puu′(t) + etH0

(
σ 〈G(t)〉K + σ2

∫ t

0

〈G(t)G(s)〉K ds+ · · ·
)
e−tH0puu′(t),

(5.1.25)

where

G(t) def
= e−tH0H1(t)e

tH0 . (5.1.26)

The Kubo-Van Kampen operator cumulants of G, e.g., 〈G(t)G(s)〉K , are defined as

in Eqs. (5.1.14)-(5.1.15). As we will see in section 5.1.3, the two-point PDF of the

velocity field can be used to calculate important quantities such as the turbulent

energy and indicator functions to stochastic shock clustering.

5.1.2 MZ-PDF Equations for the Burgers equation

Let us consider the following prototype initial/boundary value problem for the Burg-

ers equation





∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ σf(x, t;ω) x ∈ [0, 2π] t ≥ 0

u(x, 0;ω) = u0(x;ω)

u(0, t;ω) = u(2π, t;ω)

(5.1.27)

1Here we use the shorthand notation puu′(t) = p(x, x′, t; a1, a2).
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where the initial condition u0(x;ω) and the forcing term f(x, t;ω) are square inte-

grable random fields defined on a complete probability space. For each realization of

u0(x;ω) and f(x, t;ω), the solution u(x, t;ω) takes values in the space L2([0, 2π],R)

on which the operator ∂2/∂x2 is endowed with periodic boundary conditions. The

problem (5.1.27) is well-posed, since we can write u∂u/∂x as (∂u2/∂x)/2, which is

locally Lipschitz from the Sobolev space W1/4,2 2 into W−1,2, thus, allowing us to

apply general local well-posedness theorems [149,150]. The regularity of the solution

to Eq. (5.1.27) depends on the regularity of the random noise f(x, t;ω). In particu-

lar, if f is space-time white noise, then u has the regularity of Brownian motion, i.e.,

it is not differentiable in x. In this chapter, we consider smooth noise, eventually

yielding white-noise as a result of a suitable limiting procedure. In particular, we

represent f(x, t;ω) and u0(x;ω) in terms of series expansions involving proper sets

of random variables ξ(ω) = {ξ1(ω), ..., ξm(ω)} and η(ω) = {η1(ω), ..., ηl(ω)}

u0(x;η) =
l∑

k=1

ηk(ω)φk(x), f(x, t; ξ) =
m∑

j=1

ξj(ω)Ψj(x, t). (5.1.28)

The existence and uniqueness of the solution to Eq. (5.1.27) for each realization of

u0(x;η) and f(x, t; ξ) allows us to consider the random field u(x, t;ω) as a determin-

istic function of ξ and η, i.e., we have a flow map U such that

u(x, t;ω) = U(x, t;η(ω), ξ(ω)). (5.1.29)

Note that at initial time U(x, 0;η, ξ) = u0(x;η). The joint PDF of the solution to

Eq. (5.1.27) and the random vector ξ(ω) admits the following representation (see,

e.g., [100, 194, 197])

p(x, t; a, b) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

δ(a− U(x, t;A0,B))δ(b−B)q(A0,B)dA0dB, (5.1.30)

2The Sobolev space is defined as Wk,p def
= {u ∈ Lp : Dαu ∈ Lp, ∀|α| ≤ k}.
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where a ∈ R, b ∈ Rm, A0 ∈ Rl, B ∈ Rm, q(A0,B) denotes the (possibly compactly

supported) joint PDF of the random vectors η and ξ, and δ(b − B) is a multi-

dimensional Dirac delta function, i.e.,

δ(b−B)
def
=

m∏

k=1

δ(bk − Bk).

The one-point one-time PDF of the solution to Eq. (5.1.27) is obtained by integrating

(5.1.30) with respect to b = {b1, .., bm}

pu(x, t; a) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(x, t; a, b)db. (5.1.31)

Differentiating (5.1.30) with respect to x and t and using suitable identities involving

the Dirac delta function yields the following exact joint response-excitation PDF

equation3 :

∂p(t)

∂t
+

∫ a

−∞

∂p(t)

∂x
da′ + a

∂p(t)

∂x
= −σf(x, t; b)∂p(t)

∂a
− ν ∂

∂a

〈
∂2u

∂x2
δ(a− u(x, t))

〉
,

(5.1.32)

where we used the shorthand notation p(t) ≡ p(x, t; a, b). The last term in the right

hand side is defined as

〈
∂2u

∂x2
δ(a− u(x, t))

〉
def
=

∫∫
∂2U

∂x2
δ(a− U(x, t;A0,B))δ(b−B)q(A0,B)dA0dB,

(5.1.33)

and it represents an unclosed term that has to be treated using closure models having

additional assumptions [51,147]. For example, we can introduce a conditional average

3Note that differentiating (5.1.32) with respect to a allows us to remove the integral term and
it yields a second-order linear PDE.
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〈uxx|u〉4 and rewrite (5.1.32) as

∂p(t)

∂t
+

∫ a

−∞

∂p(t)

∂x
da′ + a

∂p(t)

∂x
= −σf(x, t; b)∂p(t)

∂a
− ν ∂

∂a

[〈
∂2u

∂x2

∣∣∣∣ u
〉
pu(t)

]
.

(5.1.34)

An interesting question is what happens to the solution to the PDF equations (5.1.32)

or (5.1.34) in the limit of zero viscosity ν → 0. In this case, Eq. (5.1.27) becomes

a hyperbolic conservation law that can generate shock discontinuities at random

space-time locations (see Figure 5.1 for a few solution samples). There has been

extensive theoretical investigation of the inviscid limit to the solution to the viscous

Burgers equation (see, e.g., [5, 77, 172]). From the PDF standpoint, the inviscid

limit influences the conditional average in Eq. (5.1.34). In particular, it contributes

sharply to the PDF dynamics nearby the space-time locations where random shocks

develop. This is sometimes referred to as dissipative anomalies [51]. As we shall see in

section 5.1.3, the numerical dissipation associated with finite resolution in numerical

simulations of Eqs. (5.1.27) and (5.1.34) dominates the regularizing diffusion terms

for ν → 0. Therefore, from a numerical standpoint, we could set ν = 0 in Eqs.

(5.1.27) and (5.1.34) and study the inviscid limit of the Burgers equation in the

sense of vanishing numerical viscosity for increasing levels of resolution.

5.1.3 Stochastic simulations of Burgers equation

The numerical simulation of the stochastic Burgers problem Eq. (5.1.27) has recently

attracted considerable attention [15, 80]. One difficult challenge is an effective com-

putation of the solution in the inviscid limit, in particular in the presence of random

forcing terms and random initial conditions. In fact, this could generate random

4The conditional average is explicitly defined as

〈uxx|u〉 def=
∫

∞

−∞

· · ·
∫

∞

−∞

Uxxδ(a− U(x, t;A0,B))δ(b−B)q̃(A0,B|u = a)dA0dB.
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No Forcing Weak Additive Forcing

l c
=

6
l c
=

0.
01

Figure 5.1: Sample solutions of the Burgers problem (5.1.27) in the inviscid limit ν →
0. Here we consider two initial conditions with different correlation length randomly
sampled from (5.1.40) and a realization of the random forcing term (5.1.39). It is
seen that at t = 2 the velocity field already developed the triangular-shaped shock
structure that is characteristic of the Burgers turbulence regime. Note that even
weak additive forcing (σ = 0.05) can influence the solution, especially for rough
initial conditions (lc = 0.01).

shock waves at random space-time locations. In this chapter we tackle this problem

by using the adaptive discontinuous Galerkin method we have recently developed

in [34] (see section 3.1.1).

Let us first show that the numerical viscosity of the scheme dominates the con-

ditional average term in Eq. (5.1.34), for ν → 05. Such term can be accurately

computed by Monte Carlo simulation, i.e., by sampling a sufficiently large number

of solutions to Eq. (5.1.27), and then averaging uxx = ∂2u/∂x2, conditioned to

u(x, t;ω) = a for arbitrary a. The results are shown in Figure 5.2 for random flows

5 All approaches and methodologies dealing with the numerical solution to the inviscid Burgers
equation add an artificial (numerical) diffusion term which can be made arbitrarily small in some
limiting process, e.g., by leveraging on hp-convergence. This means that we always have numerical
non-uniqueness when computing the solution to the inviscid Burgers equation.
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Figure 5.2: Numerical viscosity dominates the inviscid limit in the stochastic Burgers
equation. In (a), we show a comparison of the L2 norm of the conditional average
〈uxx|u〉 for ν = 10−2 and ν = 10−3 versus time. At time t = 1, the inviscid limit of
the solution to the Burgers equation subject to the random initial condition (5.1.35)
generates an ensemble of shock waves. Figure (b) shows the contour values of 〈uxx|u〉
for ν = 10−2 at time t = 4. Note that the minimum and the maximum values are
located, respectively, near the peaks and the dips of the ensemble of shocks.

solving Eq. (5.1.27) with initial condition

u0(x; η) = sin(x) + η(ω) (5.1.35)

and no random forcing. Here η is a Gaussian random variable with mean π and

variance 1/4. It is seen that the norm of conditional average term in Eq. (5.1.34)

becomes smaller and smaller as ν goes to 0. In other words, at finite numerical

resolution the solution to the PDF equation corresponding to the inviscid Burgers

equation provides a very good approximation to the PDF of the inviscid limit of

the solution to (5.1.27) after the shock occurrence, i.e., at t = 1 in the present

example. To this end, we verify this by comparing the solutions computed by the

joint PDF equation (5.1.34) with ν = 0 to an accurate6 MC solution to Eq. (5.1.27).

In particular, we consider a prototype space-independent forcing term

f(x, t;ω) = ξ(ω) sin(t), (5.1.36)

6Each solution sample is obtained by our adaptive DG method with a spatial discretization
based on N = 128 finite elements of order p = 8 in [0, 2π].



110

where ξ(ω) and η(ω) are independent zero-mean Gaussian random variables with

standard deviation π/10 and 1, respectively. In this hypothesis, the joint PDF of u0

and ξ is

p(0) =
5

π2
exp

[
−(a− sin(x))2

2

]
exp

[
−50 b

2

π2

]
.

We set the amplitude of the random forcing term in Eqs. (5.1.34) and (5.1.27) to

σ = 1. The joint PDF equation (5.1.34) is solved by using the DG method with

50 elements of order p = 4 and 15-th degree Hermite polynomials for the excitation

space. Time-stepping is based on 4th-order Runge-Kutta scheme with ∆t = 2×10−4.

In Figure 5.3, we plot the results of our simulations, which show that the joint PDF

solution coincides with the MC approach. Thus, in what follows we set ν = 0 in

all kinetic equations we obtained in Section 5.1.2. Note that the shock wave at

t = 1 arising from the system does not arise in the response PDF shown in Figure

5.3. Instead, such PDF solution looks rather smooth. As we will see in the next

subsection, however, smooth multi-modal PDFs can generate flow realizations with

discontinuities, i.e., shocks.

High-Dimensional Random Initial Conditions

In this section, we present numerical results for various types of spatially correlated,

high-dimensional random initial conditions. First of all, we show that a smooth

multi-modal PDF can generate shock realizations. This is done in Figure 5.4, where

we consider the one-point PDF of the velocity field in the inviscid limit for initial

conditions in the form Eq. (5.1.35). In contrast to the previous example where η

was set to be zero mean, here we consider a Gaussian η with mean π and stan-

dard deviation π/10. The non-vanishing mean induces stirring of the PDF along

the x direction, yielding multi-modal patterns after short time. The corresponding
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Figure 5.3: PDF of the velocity field: validation of the joint PDF equation. Shown is
a comparison between the marginalized solution to Eq. (5.1.34) at t = 1 and a kernel
density estimation [22] of the PDF of the velocity based on 50000 MC samples. We
also compare the mean and the standard deviation at t = 1 as computed from the
PDF and the MC approaches.
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Figure 5.4: Shock realizations of the velocity field (third row) generated by smooth
multi-modal PDFs (first row). The second row shows the cumulative density function
of the PDFs of the first row.



113

cumulative distribution function (CDF) is defined as

Cu(t, x, a)
def
=

∫ a

−∞

pu(t, x, a
′)da′, (5.1.37)

and it is plotted in the second row of Figure 5.4. In the third row, we provide

samples of the velocity field obtained from the CDF shown in the second row. It is

seen that shock patterns can be generated from CDFs resembling a step function. In

other words, the location and the steepness of the peaks in the one-point PDF can

determine shock waves in the physical space.

However, as we point out in [36], the statistical information encoded in the one-

point PDF is not sufficient to completely characterize the structure of shocks in space

and time. Indeed, it is possible to manufacture a random initial condition problem

for the inviscid Burgers equation having a significantly different shock structure

in physical space, but exactly the same one-point PDF dynamics. To this end,

simply consider a set of i.i.d. normal random variables {ηk}, and the Gaussian

initial condition

u0(x;ω) =
1√
m

m∑

k=1

[η2k(ω) sin(kx) + η2k−1(ω) cos(kx)] , (5.1.38)

whose one-point PDF is Gaussian with mean 0 and variance 1 at all spatial points

x, disregarding m. For large values of m we have very rough initial conditions

developing shock discontinuities very early in time, while for small values of m we

have smoother initial conditions developing shocks at later times. However, the one-

point PDF dynamics predicted by Eq. (5.1.34) for f = 0 and ν → 0 is exactly

the same. In other words, the one-point PDF does not encode enough statistical

information to characterize shock dynamics and clustering. However, it allows us

to compute all single-point statistical moments of the velocity field, as well as rare

events (tails of the PDF).
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Figure 5.5: Randomly forced Burgers equation. One-point PDF of the velocity
field at x = π for exponentially correlated, homogeneous (in space) random forcing
processes with correlation time τ = 0.01 and amplitude σ = 0.01 (first row) and
σ = 0.1 (second row). Shown are results obtained from the joint PDF equation
(5.1.1), and two different truncations of the MZ-PDF equation (5.1.20).

High-Dimensional Random Forcing

The numerical simulation of the joint PDF equation (5.1.1) in the presence of a

high-dimensional random forcing is a very challenging problem, as it involves the

representation of a scalar field (the joint PDF) in a high-dimensional parametric

space. For a moderate number of dimensions, effective approaches are multi-element

and sparse adaptive probabilistic collocation [34,48,61]. On the other hand, the Mori-

Zwanzig projection operator formalism we developed in previous sections allows us to

formally integrate out all the phase variables associated with the random forcing (i.e.,

the variables b), yielding low-dimensional PDF equations in the form Eq. (5.1.13).

Let us first consider a zero-mean homogeneous (in space) Gaussian random pro-

cess with exponential covariance function

〈f(t; b)f(s; b)〉b =
1

τ
exp

[
−|t− s|

τ

]
, t, s ∈ [0, T ],



115

where τ is the correlation time. Specifically, we choose T = 5 and τ = 0.01, i.e., a

nearly white-in-time Gaussian random process. The Karhunen-Loève (KL) expan-

sion of such weakly correlated random forcing, requires at least 57 random variables

to achieve less than 5% error in the eigenspectrum. We first compute a benchmark

PDF solution by solving Eq. (5.1.1) using sparse grid collocation of level 2 [130].

This entails sampling Eq. (5.1.1) at 6841 sparse grid points and then integrate the

joint PDF p(t) with respect to b in a 57-dimensional space by using appropriate

quadrature rules. This benchmark solution is used to determine the accuracy of

various truncations to the MZ-PDF equation (5.1.13), i.e. Eq. (5.1.20). This is done

in in Figure 5.5, where we compare the one-point PDF of the velocity field at x = π

obtained by the first- and second-order approximations to Eq. (5.1.20). In the first-

order approximation, we basically neglect all the terms of order σ2 or higher. We see

that when σ is small, e.g., σ = 0.01, both the first- and second-order approximations

are in good agreement with the benchmark PDF solution up to t = 5. However,

as σ becomes larger, the small-noise approximation based on the first- and second-

order truncations slightly diverge from the MC benchmark solution. However, the

computational cost of solving the second-order approximation to Eq. (5.1.20) in

this case is less than 2% the cost of solving the exact equation (5.1.1). Therefore,

the MZ-PDF framework provides a computationally efficient way to determine the

one-point statistics of the velocity field.

Burgers Turbulence and Stochastic Shock Clustering

Let us go back to the flow example discussed in the introduction, showing a re-

alization of shock clustering and shock displacement induced by weak space-time

additive forcing (see Figure 5.1). The forcing term considered there was a sample of
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Figure 5.6: Burgers turbulence. Time snapshots of the one-point PDF obtained from
the second order approximation to the MZ equation (5.1.13). We consider a rough
initial condition in the form (5.1.40) with lc = 0.01, and the forcing term (5.1.39)
with amplitude σ = 0.05.

the space-time Gaussian random field

f(x, t; ξ) = 1 +

5∑

k=1

[
(−1)k (ξ2k−1 sin(2kx) + ξ2k cos(3kx)) e

− sin(2kt)
]
, (5.1.39)

where ξk are jointly normal (independent) random variables, while the initial condi-

tion is an exponentially correlated random field represented in terms of a KL series

expansion [35, 89] in the form

u0(x;ω) = a0(η0 + sin(x)) +

m∑

k=1

√
λkηkΨk(x), (5.1.40)

where ηk are independent normal random variables, and λk and Ψk are respectively,

eigenvalues and eigenfunctions of the exponential covariance function

C(x, y) =
1

lc
exp

(
−|x− y|

lc

)
. (5.1.41)

The quantity lc denotes the spatial correlation length [192,198] of the random initial

velocity (5.1.40). In Figure 5.6, we show the time snapshots of the one-PDF of

the velocity field obtained from the second-order approximation to the MZ equation

(5.1.13). Specifically, we consider an initial condition in the form (5.1.40) with

lc = 0.01, and the forcing term (5.1.39) with amplitude σ = 0.05.
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As pointed out in [36], the one-point PDF of the solution field does not tell

us anything about the structure of shocks in space and time, thus about shock

clustering. Therefore, if we are interested in studying this phenomenon, we should

resort to other functionals of the velocity field, in particular on asymptotic properties.

In Burgers turbulence, these can be grouped into two main classes: 1) universal

properties that are independent of initial or boundary conditions, and 2) properties

that depend heavily on such conditions. For instance, the k−2 slope in the inertial

range of the energy spectrum is a universal property while the time-evolution of the

kinetic energy per unit length is not [86, 101]. Many universal properties can be

defined in terms of the two-point correlation function, e.g.,

J (t) def
=

1

2π

∫ 2π

0

∫

R

〈u(x, t)u(x+ r, t)〉 drdx, (5.1.42)

and the power spectral density

Ẽ(k, t)
def
=

1

2π

∫ 2π

0

E(x, k, t)dx, (5.1.43)

where

E(x, k, t) =
1

2π

∫

R

cos(kr) [〈u(x, t)u(x+ r, t)〉 − 〈u(x, t)〉 〈u(x+ r, t)〉] dr. (5.1.44)

J (t) is known to be invariant in time [24]. Another interesting quantity which is

ultimately related to stochastic shock clustering [122,177] is the turbulent energy per

unit length

E(t) def
=

1

2π

∫ 2π

0

Ê(x, t)dx, where Ê(x, t)
def
=

∫ ∞

0

E(x, k, t)dk. (5.1.45)

The two-point correlation function appearing in Eqs. (5.1.42), (5.1.44) and (5.1.45)
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(a) (b)

Figure 5.7: Slices of two-point PDF of the velocity field at t = 1 (a) and velocity
correlation function (b). Specifically, in (a) we plot the two-point PDF field at
x1 = π/4 and four other points x2 = {π/2, π, 3π/2, 2π}.

can be determined by integrating the solution to the two-point MZ-PDF equation

(5.1.25) as (see Figure 5.7)

〈u(x, t)u(x+ r, t)〉 =
∫ ∞

−∞

∫ ∞

−∞

a1a2p(x, x+ r, t; a1, a2)da1da2. (5.1.46)

In Figure 5.8, we plot the power spectral density (5.1.43) and the normalized

turbulent energy per unit length (5.1.45) for random initial conditions (5.1.40) with

different correlation lengths lc and random forcing terms (5.1.39) of different am-

plitude σ. It is seen that for σ = 0 the slope of the power spectral density in the

inertial range is k−2, independently of lc. This is in agreement with classical results

on Burgers turbulence. We also observe a perturbation in the energy spectrum due

to the energy injected in the system through the random forcing term. This slightly

increases the turbulent energy per unit length, relatively to the case where there

is no forcing. Note that rough random initial conditions, i.e., those with correla-

tion length ℓ = 0.01, are associated with an initial rapid decay of the normalized

turbulent energy due to shock clustering (see also Figure 5.9). Later on, the train

of triangular shocks settles down to a similarity state where the turbulent energy

decays approximately as t−2/3, in agreement with classical results of Tokunaga [185]

and Kida [101]. In Figure 5.9, we plot the space-time portraits of the normalized



119

(a) (b)

0.1 1 10 100
10

−4

10
−2

10
0

k

Ẽ
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Figure 5.8: Stochastic Burgers turbulence simulations. Shown is the k−2 decay of
the power spectral density in the inertial range (a). This property does not depend
on the correlation length lc of the initial condition, i.e., it is a universal property.
On the contrary, the dynamics of the normalized turbulent energy per unit length
(b) heavily depends on the specific choice of initial conditions. In particular, for
rough initial conditions (i.e., those with small correlation length lc) we observe a
rapid decay of the turbulent energy due to shock clustering. After that, the train
of triangular shocks settles down to a similarity state where the turbulent energy
decays approximately as t−2/3, in agreement with classical results of dimensional
analysis. Random forcing terms of small amplitude σ inject additional energy into
the system. As a consequence we observe a perturbation in the energy spectrum (a),
and an increase in the turbulent energy per unit length (b).
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lc = 6 lc = 0.01

Figure 5.9: Space-time portraits of the normalized turbulent energy in Burgers tur-
bulence. Specifically, we plot E(x, t)/E(x, 0) (5.1.45) for random initial conditions
(5.1.40) with different correlation lengths lc and random forcing terms (5.1.39) of
different amplitudes σ. It is seen that the normalized turbulent energy is an indi-
cator function of stochastic shock clustering for rough random initial conditions. In
particular, the initial rapid decay of the turbulent energy observed for lc = 0.01 cor-
responds to the transient dynamics in which the velocity field is regularized by shock
clustering (see sample solutions in Figure 5.1) before settling down to the similarity
state. The black line in each plot indicates the shock front associated with the sin(x)
term in (5.1.40). Such contribution is responsible for the increase of the normalized
turbulent energy, in particular for initial conditions with large correlation lengths.
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turbulent energy Ê(x, t)/Ê(x, 0), where Ê(x, t) is defined in Eq. (5.1.45). It is seen

that the turbulent energy undergoes a rapid decay for initial conditions with short

correlation length, i.e., for lc = 0.01. Such rapid decay corresponds to the transient

dynamics in which the velocity field is regularized by shock clustering (see sample

solutions in Figure 5.1) before settling down to the similarity state. The black line

in each plot indicates the shock front associated with the sin(x) term in (5.1.40).

Such contribution is responsible for the increase of the normalized turbulent energy,

in particular for initial conditions with large correlation lengths.

5.2 Conditional moment closure

In this section, we propose here a conditional moment closure to further reduce the

dimensionality of a kinetic equation. Let us introduce the method with reference to

a nonlinear dynamical system in the form

dx(t)

dt
= Q(x, ξ, t), x(0) = x0(ω), (5.2.1)

where x(t) ∈ Rn is a multi-dimensional stochastic process, ξ ∈ Rm is a vector

of random variables, Q : Rn+m+1 → Rn is a Lipschitz continuous (deterministic)

function, and x0 ∈ Rn is a random initial state. Upon definition of y(t) = (x(t), ξ),

we can rewrite (5.2.1) as

dy(t)

dt
= G(y, t), y(0) = (x0(ω), ξ), G(y, t) =




Q(y, t)

0


 . (5.2.2)
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Note that y(t) ∈ RN and G : RN+1 → RN , where N = n+m. The joint PDF of y(t)

evolves according to the Liouville equation

∂p(z, t)

∂t
+∇ · [G(z, t)p(z, t)] = 0, z ∈ RN , (5.2.3)

whose solution can be computed numerically only for small N . This leads us to look

for PDF equations involving only a reduced number of phase variables. For instance,

the PDF of each component yi(t) satisfies
7

∂pi(zi, t)

∂t
= − ∂

∂zi
〈ẏi(t)δ(zi − yi(t))〉

= − ∂

∂zi

∫
[Gi(y, t)p(y, t)]yi=zi

N∏

k=1
k 6=i

dyk, (5.2.4)

where p(y, t) is the full joint PDF of y(t). Similarly, the joint PDF of yi(t) and yj(t)

(i 6= j) satisfies

∂pij(zi, zj, t)

∂t

= − ∂

∂zi
〈ẏi(t)δ(zi − yi(t))δ(zj − yj(t))〉 −

∂

∂zj
〈ẏj(t)δ(zi − yi(t))δ(zj − yj(t))〉

= − ∂

∂zi

∫
[Gi(y, t)p(y, t)]yi=zi

yj=zj

N∏

k=1
k 6=i,j

dyk −
∂

∂zj

∫
[Gj(y, t)p(y, t)]yi=zi

yj=zj

N∏

k=1
k 6=i,j

dyk.

(5.2.5)

Higher-order PDF equations can be derived similarly. At this point, we notice that

the integrals in (5.2.4) and (5.2.5) can be written in terms of conditional averages

7Note that pi(zi, t) = p(ξi) for all n+ 1 ≤ i ≤ n+m, and for all t ≥ 0.
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[147, 209] of Gi, by using the well-known identities

〈Gi(y, t)|yi = zi〉 pi(zi, t) =
∫

[Gi(y, t)p(y, t)]yi=zi

N∏

k=1
k 6=i

dyk, (5.2.6)

〈Gi(y, t)|yi = zi, yj = zj〉 pij(zi, zj , t) =
∫

[Gi(y, t)p(y, t)]yi=zi
yj=zj

N∏

k=1
k 6=i,j

dyk. (5.2.7)

Here 〈Gi(y, t)|yi = zi〉 is the conditional average of Gi given yi(t) = zi. Unfor-

tunately, the computation of (5.2.6)-(5.2.7) requires the full joint PDF of y(t),

which is available only if we solve the Liouville equation (5.2.3). As mentioned

before, this is not feasible in practice even for a low number of variables. There-

fore, we need to introduce approximations. The most common one is to assume

that the joint PDF p(z, t) can be written in terms of lower-order PDFs, e.g., as

p(z, t) = p(z1, t) · · ·p(zN , t). By using integration by parts, this assumption re-

duces the Liouville equation to a hierarchy of one-dimensional PDF equations (see,

e.g., [195]).

Hereafter we follow a different approach based on conditional averages. To this

end, let us consider a specific form of Gi that allows us to simplify all equations, i.e.,

Gi(y, t) = gii(yi, t) +

N∑

k=1
k 6=i

gik(yi, yk, t).

The conditional average (5.2.6) can be now computed exactly by using the two-points

PDFs p(zi, zj, t) as

〈Gi(y, t)| yi = zi〉 pi(zi, t) = gii(zi, t)pi(zi, t) +

N∑

k=1
k 6=i

∫
gik(zi, zk, t)pik(zi, zk, t)dzk.
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On the other hand, the integral in (5.2.7) can be approximated as

∫
[Gi(y, t)p(y, t)]yi=zi

yj=zj

N∏

k=1
k 6=i,j

dyk ≃ (gii(zi, t) + gij(zj , zi, t)) pij(zi, zj, t)+




N∑

k=1
k 6=i,j

∫
gik(zi, zk, t)pik(zi, zk)dzk


 pj(zj , t),

(5.2.8)

where we discarded all contributions from the three-points PDFs and the two-points

PDFs except the ones interacting with the i-th variable. A variance-based sensitivity

analysis in terms of Sobol indices [167, 175, 192] can be performed to identify the

system variables with strong correlations. This allows us to determine whether it is

necessary to add the other two-points correlations or the three-points PDF equations

for a certain triple {xk(t), xi(t), xj(t)}.

5.2.1 CMC-PDF equation for dynamical systems

Kraichnan-Orszag Problem

Let us apply the conditional moment closure we described in the previous section to

the Kraichnan-Orszag problem studied in [203]

dx1
dt

= x1x3,

dx2
dt

= −x2x3,
dx3
dt

= −x21 + x22.

In this case we have n = 3 phase variables andm = 0 parameters, i.e., a total number

of N = 3 variables. The three-dimensional Liouville equation for the joint PDF of
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{x1(t), x2(t), x3(t)}, is

∂p

∂t
+ z1z2

∂p

∂z1
+ z2z3

∂p

∂z2
+ (z22 − z21)

∂p

∂z3
= −(z2 + z3)p, (5.2.9)

where p = p(z1, z2, z3, t). On the other hand, by using the second-order conditional

moment closure described in the previous section, we obtain the following hierarchy

of PDF equations

∂p1(z1, t)

∂t
= − ∂

∂z1

[
z1 〈x3〉3|1

]
, (5.2.10)

∂p2(z2, t)

∂t
= − ∂

∂z2

[
−z2 〈x3〉3|2

]
, (5.2.11)

∂p3(z3, t)

∂t
= − ∂

∂a3

[(
−〈x21〉1|3 + 〈x22〉2|3

)
p3(z3, t)

]
, (5.2.12)

∂p12(z1, z2, t)

∂t
= − ∂

∂z1

[
z1 〈x3〉3|1p2(z2, t)

]
+

∂

∂z2

[
z2 〈x3〉3|2p1(z1, t)

]
, (5.2.13)

∂p13(z1, z3, t)

∂t
= − ∂

∂z1
[z1z3p13(z1, z3, t)] +

∂

∂z3

[
z21p13(z1, z3, t)− 〈x22〉2|3p1(z1, t)

]
,

(5.2.14)

∂p23(z2, z3, t)

∂t
=

∂

∂z2
[z2z3p23(z2, z3, t)] +

∂

∂z3

[
〈x21〉1|3p2(z2, t)− z22p23(z2, z3, t)

]
,

(5.2.15)

where

〈f(x)〉i|j .
=

∫
f(z)pij(zi, zj , t)dzi. (5.2.16)

We also emphasize that the PDF equation of a phase space function h(x1, x2, x3),

can be easily derived based on the conditional moment closure. For example, the

PDF equation of h = x1(t) + x3(t) is

∂ph(z, t)

∂t
= − ∂

∂z

[(
−z2 + 3z〈x3〉3|h − 2〈x23〉3|h + 〈x22〉2|h

)
ph(z, t)

]
.
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Figure 5.10: Kraichnan-Orszag problem: PDF of x1(t) (a) and x2(t) (b) at t = 0,
t = 4 and t = 8. Blue lines: results from the full Liouville equation. Crosses and
circles: results of the conditional moment closure (5.2.10)-(5.2.15) at t = 4 and t = 8,
respectively.

Let us assume that the initial condition {x1(0), x2(0), x3(0)} is jointly Gaussian

p0(z1, z2, z3) =
103

(2π)3/2
exp

[
−50

(
z1 −

1

10

)2

− 50
(
z22 + z23

)
]
. (5.2.17)

Here, we assess the accuracy of the second-order conditional moment closure (5.2.10)-

(5.2.15). We recall that such closure is obtained by truncating the hierarchy of

conditional PDF equations to the two-points level. Each PDF equation is discretized

by using a Fourier spectral collocation method with with qz = 50 degrees of freedom

in each variable. Time stepping is based on explicit forth-order Runge-Kutta scheme

with △t = 10−3.

In Figure 5.10, we compare the PDF of x1(t) and x2(t) as computed by the full

system and the two-points conditional moment closure. We observe that the two

solutions are basically superimposed, suggesting that the effects of the three-points

correlations are negligible. We also remark that if we are interested only in the PDF

of one variable, then it is not necessary to solve the whole hierarchy of PDF equations

in the conditional moment closure. For example, to obtain the PDF of x1(t), we can
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Figure 5.11: Kraichnan-Orszag problem: Absolute error in the mean (a) and in the
standard deviation (b) of xk(t) (k = 1, 2, 3) computed by the second-order conditional
moment closure (5.2.10)-(5.2.15).

just solve Eqs. (5.2.10), (5.2.15), and (5.2.15). In Figure 5.11, we plot the absolute

error in the mean and the standard deviation of {x1(t), x2(t), x3(t)} as computed by

the conditional moment closure. These errors arise because we are not including the

three-points PDFs in the hierarchy of equations.

Lorenz-96 system

The Lorenz-96 system is a continuous in time and discrete in space model often used

in atmospheric sciences to study fundamental issues related to forecasting and data

assimilation [97, 116]. The basic equations are

dxi
dt

= (xi+1 − xi−2) xi−1 − xi + F, i = 1, ..., n. (5.2.18)

Here we consider n = 40, F = 1, and assume that the initial state x(0) =

[x1(0), ..., x40(0)] is jointly Gaussian with PDF

p0(z1, ..., z40) =

(
25

2π

)20 40∏

i=1

exp

[
−25

2

(
zi −

i

40

)2
]
. (5.2.19)
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Figure 5.12: Lorenz-96 system: Mean (first row) and standard deviation (second
row) of the solution computed by using the first-order conditional moment closure
(a,c) and Monte-Carlo simulation (b,e). In (d) we compute the standard deviation
by using the second-order conditional moment closure.
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Figure 5.13: Lorenz-96 system: Absolute errors in the mean and in the standard
deviation as computed by the first- and the second-order conditional moment closure
(Eqs. (5.2.21) and (5.2.22), respectively). Errors are relative to MC results.
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Thus, in this system we have n = 40 phase variables and m = 0 parameters, i.e.,

N = n. The kinetic equation governing the joint PDF of the phase variables x(t) =

[x1(t), ..., x40(t)] is

∂p(z, t)

∂t
= −

40∑

i=1

∂

∂zi
[((zi+1 − zi−2)zi−1 − zi + F ) p(z, t)] , z ∈ R40 (5.2.20)

and it cannot be obviously solved in a tensor product representation because of

high-dimensionality and possible lack of regularity (for F > 10) related to the frac-

tal structure of the attractor [97]. Thus, we are led to look for reduced-order PDF

equations. Specifically, we consider here the first- and second-order conditional mo-

ment closures we discussed in section 5.2. The first one yields the approximated

system

∂pi(zi, t)

∂t
= − ∂

∂zi

[
(〈xi+1〉 − 〈xi−2〉) 〈xi−1〉i−1|i − (zi − F )pi(zi, t)

]
, (5.2.21)

where 〈 〉i|j is defined in (5.2.16). In order to close such system within the level of

one-point PDFs, 〈xi−1〉i−1|xi
could be replaced, e.g., by 〈xi−1〉 p(zi, t). Similarly, the

second-order conditional moment closure yields the hierarchy

∂p
i i+1

(z
i
, z

i+1
, t)

∂t
= − ∂

∂z
i

[
z
i+1

〈
x

i−1

〉
i−1|i

p
i+1

(z
i+1
, t)−

〈
x

i−2

〉 〈
x

i−1

〉
i−1|i

p
i+1

(z
i+1
, t)

− (z
i
− F ) p

i i+1
(z

i
, z

i+1
, t)
]
− ∂

∂z
i+1

[〈
x

i+2

〉
i+2|i+1

z
i
p
i
(z

i
, t)−

〈
x

i−1

〉
z
i
p
i i+1

(z
i
, z

i+1
, t)

− (z
i+1
− F ) p

i i+1
(z

i
, z

i+1
, t)
]
, (5.2.22)

where the quantity
〈
x

i−1

〉
z
i
p
i i+1

(z
i
, z

i+1
, t) can be substituted by

〈
x

i−1

〉
i−1|i
〈x

i
〉
i|i+1

.

Each equation in (5.2.21)-(5.2.22) is discretized by using a Fourier spectral collo-

cation method with qz = 50 degrees of freedom in each variable, and fourth-order

Runge-Kutta time integration with △t = 10−3.
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In Figure 5.12, we plot the mean and the standard deviation of the solution to

(5.2.18) computed by the first- and the second-order conditional moment closures

(Eqs. (5.2.21) and (5.2.22), respectively), as well as with the Monte Carlo (MC)

simulation - 50000 solution samples. It is seen that the mean of the conditional

moment closure coincides with the one obtained from MC. However, the standard

deviation is slightly different. This can be also seen in Figure 5.13, where we plot

the absolute error (relative to MC) of the mean and standard deviation computed

by the conditional moment closure. Note that adding the two-points PDFs to the

hierarchy in this case improves the error in the standard deviation only by a small

amount.

5.2.2 CMC-PDF equation for second-order PDEs

An interesting question arises whether it is possible to determine a closed PDF

evolution equation of the solution to second order PDEs at a specific space-time

location. Unfortunately, the answer is negative due to its nonlocal solutions in

space and time. This nonlocal feature yields the impossibility to determine a point-

wise equation for the probability density. Still, there has been extensive studies

to tackle this problem by use of functional integral methods, in particular those

ones involving the Hopf characteristic functional [91,120,143,144]. These functional

methods aim to cope with the global probabilistic structure of the solution and

they have been employed to solve many fundamental problems in physics such as

turbulence [124, 181]. However, functional differential equations involving the Hopf

characteristic functional are unfortunately not amenable to numerical simulation. In

addition, the amount of statistical information carried on by the Hopf characteristic

functional is often far beyond the needs of practical uncertainty quantification, which

usually reduces only to the computation of a few statistical moments of the solution

at specific space-time locations.
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Thus, the purpose of this section is to develop a computable algorithm to in-

vestigate the probability density of the stochastic solutions to higher-order PDEs.

The algorithm relies on the semi-discrete form of PDEs that can be written in a

form of multi-dimensional dynamical system that yields a Liouville type PDF equa-

tion. Afterwards, the conditional moment closure is employed to the corresponding

multi-dimensional PDF system.

Advection-Diffusion equation

Let us consider an advection-diffusion equation as following.

∂u

∂t
=

∂

∂x
(ν(x, t;ω)u) +

∂

∂x

(
µ(x, t;ω)

∂u

∂x

)
, (5.2.23)

where x ∈ [0, 2π], t ≥ 0, ν(x, t;ω) is the random advection coefficient, and

µ(x, t;ω) > 0 is the random diffusivity. This equation is accompanied by a peri-

odic boundary condition u(0, t;ω) = u(2π, t;ω) and ux(0, t;ω) = ux(2π, t;ω). We

then discretize the solution in the physical space by using a set of orthogonal basis

functions in L2([0, 2π]). Here, we consider the Fourier basis functions,

u(x, t;ω) =
∑

k

ûk(t;ω)e
−ikx. (5.2.24)

The semi-discretized system becomes,

∂ûk(t;ω)

∂t
= −

∑

n+m=k

i(n +m) ν̂n(t;ω) ûm(t;ω)−
∑

n+m=k

m(n +m) µ̂n(t;ω) ûm(t;ω),

for each integer k. We assume that we have available a representation of the random

coefficients in terms of random variables as ν(x, t;ω) = ν(x, t; ξ(ω)) and µ(x, t;ω) =

µ(x, t; γ(ω)). Taking pû as shorthand of pû(a, bν , bµ, t), this yields the joint REPDF
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equation of the Fourier coefficients û = {ûk},

∂pû
∂t

= −
∑

k

∂

∂ak

[(
−
∑

n+m=k

(n +m) (i ν̂n(t; bν) +mµ̂n(t; bµ)) am

)
pû

]
, (5.2.25)

The dimensionality of the REPDF equation (5.2.25) depends on the truncation of the

Fourier expansion (5.2.24). In other words, the dimensionality can be as high as the

number of basis functions, which will be necessary when the solution in the physical

space has low regularity. Thus, we employ the conditional moment closure approach

developed in Section 5.2 to obtain a reduced-order PDF equation, approximating

the system within lower order interactions.

The exact evolution equation of the one-point PDF of ûk can be written as follows

∂pûk

∂t
= − ∂

∂ak

∫ (
−
∑

n+m=k

(n+m) (i ν̂n(t; bν) +mµ̂n(t; bµ)) am

)
pûic

(aic|ûk = ak) daic ,

(5.2.26)

where ic = [..., i− 2, i− 1, i+ 1, i+ 2, ...]. While the exact one-point PDF equation

(5.2.26) involves the marginalization with respect to the full joint PDF, we approx-

imate the conditional expectation with lower order PDFs. The conditional moment

closures by using the one- and two-point PDFs can be derived as follows:

∂pk
∂t

= − ∂

∂ak

[
−
∑

n+m=k

((n +m) (i ν̂n(t; bν) +mµ̂n(t; bµ)) 〈am〉) pk
]
, (5.2.27)

∂pkl
∂t

= − ∂

∂ak

[
−
∑

n+m=k

(∫
k (i ν̂n(t; bν) +mµ̂n(t; bµ)ampkm) dam

)
pl

]

− ∂

∂al

[
−
∑

n+m=l

(∫
l (i ν̂n(t; bν) +mµ̂n(t; bµ)ampml) dal

)
pm

]
, (5.2.28)

In practice, we consider the solution in the following finite-order expansion by using
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the trigonometric basis functions,

u(x, t;ω) = û0(t;ω) +
N∑

k=1

(ûk(t;ω) sin(kx) + û−k(t;ω) cos(kx)) . (5.2.29)

5.2.3 Stochastic simulation of second order PDEs

We first consider a time-dependent random coefficient for the diffusion term. In

particular, µ(t;ω) in Eq. (5.2.23) a log-normal random coefficient defined as

V (t;ω) = log(µ(t;ω)), where V (t;ω) is exponentially correlated Gaussian process

Cov[V (t;ω)V (s;ω)] =
σ2

lc
exp

[
−|t− s|

lc

]
,

with 〈V (t;ω)〉 = 0 and σ = 0.1. The coefficient is represented in a series expansion

by using KL expansion and we truncate the series to achieve 95% of the eigen-

spectrum. When the random coefficient is independent to the physical variable, the

semi-discretized system of each Fourier modes are independent. Therefore, with a

sufficient regularity assumption for the PDF, we can truncate the conditional moment

closure at the level of one-point PDFs. The first-order conditional moment closure

becomes

∂pk
∂t

= − ∂

∂ak

[
−k2µ(t, bµ) ak pk

]
. (5.2.30)

We remark that, in case of a constant coefficient µ the PDF solution of the one-

point closure Eq. (5.2.30) coincides with the full exact solution. To clarify, assuming

the random initial condition as u(x, t0;ω) =
∑

k sin(kx)ηk(ω), the solution to Eq.

(5.2.30) is pûk(t) = pηk(ake
µk2t)eµk

2t. This solution is equivalent to the exact solution

of the stochastic heat equation (5.2.23) written as an ensemble of the trajectory of

the initial condition, i.e., u(x, t;ω) =
∑

k ηk(ω) sin(kx)e
−µk2t.

Since each pk is independent, we simply consider the initial condition u(x, t0;ω) =

sin(x)ηλ(ω) with Gaussian random variable η1(ω) = N(1, 0.1). The solution with
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Figure 5.14: Standard deviation of the solution to the heat equation with time-
correlated random coefficient with correlation length lc upto time t = 1. The shown
results are computed by the PDF, PCM, and MC approach, where we cannot visually
distinguish the difference in the results.
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Figure 5.15: Relative L2 error of the mean e2(〈u〉) and standard deviation e2(〈u2〉 −
〈u〉2) of the solution to the diffusion with N = 1 (a) and advection with N = 3 (b)
equation with correlation length lc = 10 up to time t = 1. We compute the reference
solution by using 50,000 MC simulations.

N = 1 is computed for diffusive term with different correlation time lc = 10, 1, 0.1,

by using the forth-order Runge-Kutta method with step size △t = 10−3. Figure 5.14

shows the evolution of the standard deviation of the solution at time t = 0, 0.5, 1,

computed by using the one-point conditional moment closure and the MC approach.

The two lines cannot be visually distinguished. The relative L2 error of the mean

and standard deviation between the one-point closure and PCM solution is plotted

in Figure 5.15(a). We observe reasonable accuracy considering the time step and the

truncation of the computational domain.

In case of space dependent coefficients, interaction between the Fourier coeffi-
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Figure 5.16: The evolution of the mean (a) and standard deviation (b) of the solution
to the heat equation with space dependent random coefficient upto time t = 1. The
shown results are computed by using the PDF approach (black- ·) and MC (red - -).

cients occurs in the semi-discretized system. Hence, it becomes inevitable to include

the higher-order joint PDFs. In our simulation, we compute the following two-point

closure for the joint REPDF of the k-th and l-th coefficient

∂pkl
∂t

= − ∂

∂ak
Q(pkl, k)−

∂

∂al
Q(pkl, l) (5.2.31)

where

Q(pij , i)
def
=





−i2µ̂0aipij +
∑

n+m=i

(
mi
2
(−µ̂n〈a−m|ai〉 − µ̂−n〈am|ai〉)

)
pj

+
∑

n−m=|i|

(
m(n−m)

2
(µ̂n〈a−m|ai〉 − µ̂−n〈am|ai〉)

)
pj, i ≥ 0.

−i2µ̂0aipij +
∑

n+m=|i|

(
−mi

2
(µ̂n〈am|ai〉 − µ̂−n〈a−m|ai〉)

)
pj

+
∑

n−m=|i|

(
m(n−m)

2
(µ̂n〈am|ai〉+ µ̂−n〈a−m|ai〉

)
pj , i < 0.

(5.2.32)

Here, the excitation variables are omitted, and 〈g(aj)|ai〉 def
=
∫
g(aj)pijdaj. For the

space dependent random coefficient, we consider V (x;ω) = log(2µ(x;ω)), where

V (x;ω) =
∑2

k=1 (sin(kx)ξk(ω) + cos(kx)ξ−k(ω)) and ξk(ω) ∼ N(0, 1/32) for all k.
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By taking the initial solution as

u(x, t0;ω) = η0(ω) +

3∑

k=1

(sin(kx)ηk(ω) + cos(kx)η−k(ω)) , (5.2.33)

with independent Gaussian random variables ηk(ω) ∼ N(1, 0.1) for k 6= 0 and

η0(ω) ∼ N(0, 0.1), the initial PDF becomes pkl(ak, al, t0) = pηk(ak)pηl(al). We take

the resolution of the solution to be the same as the initial condition by using N = 3.

Figure 5.16 compares the mean and standard deviation computed by using the con-

ditional moment closure (5.2.34) and 50,000 MC simulations at time t = 0, 0.1, ..., 1.

The relative L2 error stays less than 10−3 and 10−2 in the first and second moment.

We then move on to the advection term, where the two-point conditional moment

closures can be written as

∂pkl
∂t

= − ∂

∂ak
P(pkl, k)−

∂

∂al
P(pkl, l) (5.2.34)

where

P(pij, i)
def
=





−iν̂−i〈a0|ai〉pj − iν̂0〈a−i|ai〉pj +
∑

n+m=i

(
i
2
(ν̂n〈am|ai〉 − ν̂−n〈a−m|ai〉)

)
pj

+
∑

n−m=|i|

(
n−m
2

(−ν̂n〈am|ai〉 − ν̂−n〈a−m|ai〉)
)
pj , i ≥ 0.

−iν̂−i〈a0|ai〉pj − iν̂0〈a−i|ai〉pj +
∑

n+m=|i|

(
−i
2
(ν̂−n〈am|ai〉+ ν̂n〈a−m|ai〉)

)
pj

+
∑

n−m=|i|

(
n−m
2

(−ν̂−n〈am|ai〉+ ν̂n〈a−m|ai〉
)
pj, i < 0.

(5.2.35)

By considering the initial condition as in Eq. 5.2.33 with N = 3 and time dependent

coefficients with correlation length lc = 10, we again compute the solution by using

seven terms in the Fourier series. Figure 5.17 plots the mean and standard deviation

of the solution at time t = 0, 0.5 and 1 for the advection equation and the errors are

plotted in Figure 5.15 (b). We observe that the error of this approach compared to

the solution of the exact REPDF equation in section 4.3.1 stays in the same level for
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Figure 5.17: The evolution of the mean (a) and standard deviation (b) of the solution
to the advection equation with time dependent random coefficient up to time t = 1
computed by using the PDF approach (black- ·) and MC (red - -).

the time dependent coefficient case. However, the error increases for space dependent

coefficients that indicates the magnitude of the higher Fourier modes in the solution

being nontrivial.

5.3 Summary

In this chapter, we presented two methodologies to derive reduced-order PDF equa-

tions for quantities of interest in nonlinear stochastic systems. The first idea by using

MZ framework relies on defining suitable phase space functions and corresponding

projection operators, yielding formally exact reduced-order PDF equations. The

effective numerical simulation of such reduced order PDF equations relies on appro-

priate approximations. The schemes proposed so far are limited to identification

of a small quantity that serves as a basis for perturbation expansion in terms of

generalized operator cumulants. In spite of its restriction, we studied the statistical

properties of random shock waves governed by the stochastic Burgers equation with

this approach. We revisited this fundamental problem of classical fluid mechanics

and provided new insights into the analysis of the underlying non-linear processes.

Specifically, the reduced-order MZ-PDF equations are derived for the one- and the
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two-point PDF of the velocity field in the inviscid limit. We also addressed question

of how random shock waves in space-time manifest themselves in probability space

and proved that information on shock dynamics and clustering is not encoded in the

one-point PDF. However, by using the two-point PDF of the velocity field, whose

exact dynamics is governed by a Mori-Zwanzig-type equation, we can compute im-

portant quantities, such as the turbulent energy, which is is ultimately related to

shock dynamics and clustering.

An alternative approach based on a hierarchy of coupled PDF equations is pre-

sented, that is the conditional moment closures. This system resembles the BBGKY

and the Lundgren-Monin-Novikov hierarchies, which approximates the system based

on the level of interaction commonly truncated at low level. The main feature of

this approach is that it allows us to reduce the high-dimensional kinetic equation

into a sequence of low-dimensional problems. We studied the accuracy and the com-

putational efficiently of first- and second- order truncations of the such hierarchy

for non-linear dynamical systems including the Kraichnan-Orszag and the Lorenz-96

system. In particular, this approach is employed to compute the probability den-

sity evolution of advection-diffusion equation. By semi-discretization in the physical

space, non-local character of the system is associated to the global basis and the

interaction is approximated with the conditional moment closure.
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Uncertainty propagation across

heterogeneous domains
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Chapter 6

Extension of Karhunen-Loève

expansion

In this chapter, we present two extensions of the classical KL expansion to char-

acterize the random fields focusing on the mutually correlated statistical structure.

In section 6.1, we present two expansion methods to represent multi-correlated non-

stationary stochastic processes. We call the first method as multiple uncorrelated KL

(muKL) expansion based on the spectral decomposition of a suitable assembled pro-

cess, and it yields series expansions in terms an identical set of uncorrelated random

variables. The second approach, multiple correlated (mcKL) expansion method,

relies on expansions in terms of correlated sets of random variables. The cross-

covariance structure of the processes is imposed by setting the cross-correlation be-

tween such sets of random variables appropriately. Both methods are straightforward

to use and can be readily employed in stochastic simulations based on Monte-Carlo,

polynomial chaos [71, 213], or probabilistic collocation [61]. The effectiveness and

the computational efficiently of both methods is discussed in section 6.2 with an

application of muKL to a tumor growth model driven by two mutually correlated

stochastic processes. In section 6.3, we introduce our second extension to obtain a

140
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localized expansion of random processes and fields for the purpose of domain decom-

position. This expansion preserves second-order global statistical properties, i.e., the

two-point correlation function across different domains. The convergence result of

the local expansion method is presented in section 6.3.2.

6.1 KL expansion for multi-correlated processes

Let us consider an ensemble of n zero-mean, square integrable random processes

{f1(t;ω), ... , fn(t;ω)} (6.1.1)

in a complete probability space (Ω,F , P ), where Ω denotes the sample space, F is

a σ-field on Ω, and P is the applicable probability measure on F . We assume that

each process is defined in a bounded time interval [0, T ]. The correlation structure

between the processes {f1(t;ω), ..., fn(t;ω)} can be represented in terms of n(n+1)/2

covariance kernels Cij ,

Cij (s, t)
def
= E [fi(t;ω)fj(s;ω)] , 1 ≤ i ≤ j ≤ n ,

where E[·] denotes the statistical expectation operator. The quantity Cii(s, t) is the

auto-covariance of the process fi(t;ω), which will be also denoted as Ci(s, t), for

notational convenience. If the processes {f1(t;ω), ..., fn(t;ω)} are mutually indepen-

dent, then the classical KL expansion can be applied to each process, leading to

multiple series which can be constructed separately [88, 141]. However, if the cross-

covariances Cij(s, t) are not zero, then it is not straightforward to obtain consistent

expansions for all random processes, reflecting both the autocorrelation as well as

the cross covariance structure.

Hereafter we propose two different methods to overcome this problem. The first
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relies on series expansions of all processes in terms of a single set of uncorrelated

random variables (see also [156]). The second employs distinct but correlated sets of

random variables for each process [202,211,218]. We will examine both stationary as

well as non-stationary processes. In particular, we will consider Gaussian processes

with exponential

Ci(s, t) =
Di

τi
exp

[
−|t− s|

τi

]
(6.1.2)

and Gaussian

Ci(s, t) =
Di

τi
exp

[
−6(t− s)

2

τ 2i

]
(6.1.3)

covariances, where τi and Di represent, respectively, the correlation length and the

correlation amplitude of the process fi(t;ω). We will also consider non-stationary

covariances [43, 76], such as those associated with fractional Brownian motion

Ci(s, t) =
Di

2

(
|s|2Hi + |t|2Hi − |s− t|2Hi

)
, (6.1.4)

where 0 < Hi < 1 is the Hurst parameter, and Brownian bridge

Ci(s, t) = Di (min(s, t)− st) (6.1.5)

processes.

6.1.1 Multiple uncorrelated KL expansions (muKL)

In this method we look for a series expansion of each random process in (6.1.1) in

terms of a single set of uncorrelated random variables. In order to construct such

series, we first consider an assembled process f̃(t;ω) defined as

f̃(t;ω)
def
= fi(t− Ti−1;ω) t ∈ Ii , (6.1.6)
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where Ti = iT , I1 = [0, T1] and Ii = (Ti−1, Ti] (1 ≤ i ≤ n). In other words, the

restriction of the assembled process f̃(t;ω) to the time interval Ii coincides with the

process fi(t;ω). Note that here we assumed that all processes in (6.1.1) are defined

on the same time interval [0, T ], although this requirement can be easily relaxed.

Obviously, f̃(t;ω) is still a second-order process satisfying

E

[
f̃(t;ω)

]
= 0, E

[
f̃(t;ω)f̃(s;ω)

]
= C̃(s, t), (6.1.7)

where the assembled covariance function C̃(s, t) is defined as

C̃(s, t)
def
= Cij(s− Ti−1, t− Tj−1) s ∈ Ii, t ∈ Ij . (6.1.8)

At this point, we look for a KL-type expansion of the assembled process (6.1.6) in

the form

f̃(t;ω) =
∞∑

k=1

√
λkf̃k(t)ξk(ω), (6.1.9)

where ξk(ω) are uncorrelated random variables

ξk(ω)
def
=

1√
λk

∫ Tn

0

f̃(t;ω)f̃k(t)dt, (6.1.10)

while λk and f̃k(t) are, respectively, eigenvalues and eigenfunctions of a symmetric

compact integral operator [99,160] with kernel (6.1.8), i.e., they are solutions to the

homogeneous Fredholm integral equation of the second kind

∫ Tn

0

C̃(s, t)f̃(s)ds = λf̃(t). (6.1.11)

However, our assembled covariance C̃(s, t) could not be positive semi-definite, even

when all the covariances are positive semi-definite. This might lead to negative

eigenvalues. For practical applications it is desirable to have a non-negative operator.
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In a discrete setting this yields the following positivity condition for the assembled

discretized covariance C̃(ti, tj)

m∑

j=1

m∑

i=1

C̃(ti, tj)xixj ≥ 0, (6.1.12)

for any finite time sequence {t1, ..., tm} and real numbers {x1, ..., xm}. In other words,

the m×m matrix

C̃ =




C̃(t1, t1) C̃(t1, t2) · · · C̃(t1, tm)

C̃(t2, t1) C̃(t2, t2) · · · C̃(t2, tm)

...
...

. . .
...

C̃(tm, t1) C̃(tm, t2) · · · C̃(tm, tm)




(6.1.13)

should be positive semi-definite for any set of m distinct time instants in [0, T ]. As

we will see in section 6.1.1, the positivity requirement introduces several constraints,

e.g., in the cross-correlation lengths. Once we have available the eigen-pair {λk, f̃k(t)}

(k = 1, 2, ...), ordered according to the magnitude of the eigenvalues λk, then we

represent each eigenfunction f̃k(t) in terms of n sub-components φ
(i)
k (t) (i = 1, ..., n)

defined as

φ
(i)
k (t)

def
= f̃k(t+ Ti−1)I[0,T ](t), (6.1.14)

where I[0,T ] is the indicator function on the set [0, T ]. In this way, the i-th random

process fi(t;ω) is expanded as

fi(t;ω) =

∞∑

k=1

√
λkφ

(i)
k (t)ξk(ω) . (6.1.15)

Note that λk and ξk(ω) appearing this equation are the same as those appearing in

the assembled process (6.1.9). For each specific index i, the set of sub-components
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{φ(i)
k (t)} (k = 1, 2, ..) is not orthogonal1 nor normalized in t ∈ [0, T ]. However, φ

(i)
k (t)

can be easily normalized within the time interval [0, T ]. This leads the following series

fi(t;ω) =
∞∑

k=1

√
λ̂
(i)
k φ̂

(i)
k (t)ξk(ω) , (6.1.16)

where φ̂
(i)
k (t)

def
= φ

(i)
k (t)/‖φ(i)

k (t)‖2 and λ̂(i)k
def
= λk ‖φ(i)

k (t)‖22. We remark that each ran-

dom process in (6.1.15) or (6.1.16) is represented in terms of the same set of random

variables ξi. Therefore the muKL method cannot be used to represent heterogeneous

sets of processes, i.e., processes with different types of random variables in the series

expansion.

Next, we study the convergence properties of truncated muKL expansions. To

this end, let us first define the truncated assembled process

SM(t;ω)
def
=

M∑

k=1

√
λkf̃k(t)ξk(ω) , (6.1.17)

and the corresponding mean-squared error as

ε2M
def
=

∫ Tn

0

E

[(
f̃(t;ω)− SM(t;ω)

)2]
dt . (6.1.18)

By using the fact that ξk are uncorrelated and that f̃k are orthonormal, we immedi-

ately obtain

ε2M =
∞∑

k=M+1

λk , (6.1.19)

i.e., the truncation error of the series (6.1.9) decreases with respect to the decay rate

of the eigenvalues. The quantity ε2M provides also an upper bound for the truncation

1The spectral theorem [99] guarantees that the solutions to Eq. (6.1.11) are orthonormal in
L2([0, Tn]). This does not obviously imply that their sub-components are orthogonal as well.
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error of the muKL expansion (6.1.15). In fact, we have

∫ T

0

E



(
fi(t)−

M∑

k=1

√
λkφ

(i)
k (t)ξk

)2

 dt =

∫ Ti

Ti−1

E

[(
f̃(t)− SM(t;ω)

)2]
dt ≤ ε2M .

(6.1.20)

In addition, the errors of the cross-covariances Cij are bounded by the error of the

assembled covariance C̃(t, s) in Eq. (6.1.8). In fact, by the Mercer’s theorem [160],

the quantity

εC̃M
def
=

1

‖C̃(s, t)‖1

∫ Tn

0

∫ Tn

0

∣∣∣∣∣C̃(s, t)−
M∑

k=1

λkf̃k(s)f̃k(t)

∣∣∣∣∣ dtds (6.1.21)

goes to zero uniformly in M , and this implies that

1

‖C̃(s, t)‖1

∫ Tn

0

∫ Tn

0

∣∣∣∣∣Cij(s, t)−
M∑

k=1

λkφ
(i)
k (s)φ

(j)
k (t)

∣∣∣∣∣ dtds (6.1.22)

is bounded by εC̃M . Similar results hold for the covariances Ci(s, t). The proper choice

of M in (6.1.17) can be done, e.g., by imposing a certain threshold for the errors εM

or εC̃M . Based on Eq. (6.1.19), this is equivalent to set a threshold for the relative

cumulative spectrum, e.g.,
M∑

k=1

λk ≥ 0.95

∞∑

k=1

λk . (6.1.23)

Positivity constraints for exponential covariances

We have seen in the previous section that the assembled covariance kernel (6.1.8)

is, in general, not positive semi-definite. This could yield negative eigenvalues in

the expansion of the assembled process and, consequently, in the expansions of all

processes. In practical applications it is convenient to have positive eigenvalues. This

requirement induces a positivity constraint in the integral operator at the left hand

side of (6.1.11). In order to understand the implications of such constraint, let us
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consider a simple prototype problem involving two random processes, f1(t;ω) and

f2(t;ω), with exponential covariances and cross-covariance as in Eq. (6.1.2). We

choose two time instants (s1, s2) ∈ [0, T ]2, such that t1 = s1 and t2 = s2 + T . This

yields the following assembled covariance kernel

C̃ =




1

τ1

1

τ12
exp

[
−|s1 − s2|

τ12

]

1

τ12
exp

[
−|s1 − s2|

τ12

]
1

τ2


 ,

which must be positive semi-definite for all s1 and s2. An equivalent statement for a

matrix to be positive semi-definite is that all the eigenvalues are non-negative and a

necessary condition is that the determinant is non-negative. In our case, this yields

det
[
C̃
]
=

1

τ1τ2
− 1

τ 212
exp

[
−2 |s1 − s2|

τ12

]
≥ 0 , (6.1.24)

which is verified for all s1 and s2 provided τ1τ2 ≤ τ 212. This result can be extended

to n exponentially correlated random processes by choosing t1 ∈ [Ti−1, Ti] and t2 ∈

[Tj−1, Tj ], where i < j. By using similar arguments we obtain that the assembled

covariance kernel is non-negative if the correlation lengths satisfy

τiτj ≤ τ 2ij . (6.1.25)

This positivity condition holds also for processes with Gaussian covariances in the

form (6.1.3). In summary, the set of correlation lengths {τij} for which the muKL

method is applicable is bounded. The exact range will be determined numerically in

section 6.2. Constraints of type Eq. (6.1.25) arise as a consequence of the assumption

that each process fi is a linear combination of an identical set of random variables. In

order to see this, let us revisit the example above and assume that each process has

the same correlation length, i.e., τi = τj . In this case the positivity condition of the
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assembled covariance is satisfied by the requirement τi = τj ≤ τij . Thus, the cross-

correlation length between two processes must be larger than the correlation length

of each process. In other words, expanding different random processes relatively to

the same set of random variables (as done in muKL) makes sense if the processes

are “enough correlated” to each other.

6.1.2 Multiple correlated KL expansion (mcKL)

Differently from the muKL technique introduced so far, where only one set of uncor-

related random variables was used to represent the whole set of stochastic processes

(6.1.1), the mcKL expansion method employs different sets of mutually correlated

random variables. Let

fi(t;ω) =

∞∑

k=1

√
γikψ

i
k(t)η

i
k(ω) (6.1.26)

be the standard KL expansion of fi(t;ω). For a fixed index i, {γik, ψi
k(t)} are eigen-

pairs of the auto-covariance Ci(s, t), while {ηik(ω)} is a set of zero-mean uncorrelated

random variables with unit variance. Upon definition of

Kij
km

def
= E

[
ηikη

j
m

]
, (6.1.27)

we obtain from Eq. (6.1.26) the cross-covariances

Cij(s, t) = E [fi(s;ω)fj(t;ω)] =

∞∑

k,m=1

Kij
km

√
γikγ

j
mψ

i
k(s)ψ

j
m(t) . (6.1.28)

The correlation constants Kij
km in Eq. (6.1.27) can be determined by projecting the

kernels Cij(s, t) onto the eigenfunction set of each random process. This yields (see

also [225])

Kij
km =

1√
γikγ

j
m

∫ T

0

∫ T

0

Cij(s, t)ψ
i
k(s)ψ

j
m(t)dsdt . (6.1.29)
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Let K be the block matrix

K
def
=




I K12 · · · K1n

K21 I · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · I




, (6.1.30)

where I is the identity matrix and Kij is the matrix defined in Eq. (6.1.29). Note

that, in general, K is symmetric but not necessarily positive definite. We will revisit

this issue in section 6.2.2.

The next question is how to obtain the random variables {ηik(ω)} in Eq. (6.1.26)

from Kij
km. To this end, let

η
def
=




{η1k(ω)}

{η2k(ω)}
...

{ηnk (ω)}




(6.1.31)

be a correlated random vector collecting all random variables {ηik(ω)} in which the

processes (6.1.26) are expanded. In order to generate realizations η we assume that

K is positive definite and perform a Cholesky decomposition in the form K = RRT .

Then we transform the random variables as η̃ = R−1η. This yields E
[
η̃η̃T

]
= I, i.e.,

the random vector η̃ has uncorrelated components. Thus, in order to represent our

processes we can first consider a set of uncorrelated random variables η̃ and then

transform them into the specified correlated set η by simply applying R to η̃2. The

eigenfunctions ψi
k(t) in (6.1.26) can be transformed as well by applying R to the

2We recall that correlated non-normal random variables can be also transformed into a set of
uncorrelated normal random variables by using Nataf transformation [107]. This technique first
transforms each non-normal random variable into a normal random variable by using the inverse
cumulative distribution function, and then apply the Cholesky decomposition to the correlation
matrix to convert them into uncorrelated variables.
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muKL mcKL

1. Assemble the random processes {f1, ..., fn}
and the covariance function as in Eqs. (6.1.6)-
(6.1.8)
2. Apply KL expansion to the assembled pro-
cess (6.1.9)

3. Determine the basis function of each pro-
cess and represent it as in Eqs. (6.1.14)-
(6.1.15)

1. Apply KL expansion to each process as in
Eq. (6.1.26)

2. Compute the correlation coefficients that
yield the proper correlation structure (6.1.29)

3. Represent each process as in (6.1.26), where
ηkj are determined by a singular value decom-
position of (6.1.30)

Table 6.1: Summary of the algorithms for muKL and mcKL expansions.

right. In fact, if we denote by Ψ(t) the vector collecting the eigenfunctions of all

the auto-covariances, then we have Ψ̃(t) = Ψ(t)R. The series expansions (6.1.26)

obtained in this way satisfy the correlation structure (6.1.28). Similar expansions

have been obtained by [202], by directly imposing the correlation constants rather

than considering their expression in terms of cross-covariance kernels. The truncation

error of the mcKL series can be defined as the summation of the error in each

covariance kernel

ε
Cij

Mij

def
=

1

‖Cij(s, t)‖1

∫ T

0

∫ T

0

∣∣∣∣∣∣
Cij(s, t)−

Mi∑

k=1

Mj∑

m=1

Kij
km

√
γikγ

j
mψ

i
k(s)ψ

j
m(t)

∣∣∣∣∣∣
dsdt .

(6.1.32)

Analytical results for exponentially correlated processes

The eigenvalues and eigenfunctions of integral operators in the form (6.1.11) with

exponential covariances (6.1.2) admit an analytical expression [71,89]. In particular,

let ci = 1/τi, where τi is the correlation length of the process fi(t;ω). Then γik and

ψi
k(t) in Eq. (6.1.26) are given by

γik =
2ci

w2
ik + c2i

(6.1.33)

ψi
k(t) =

1

Aik

(
wik

ci
cos(wikt) + sin(wikt)

)
, (6.1.34)
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where wik (k = 1, 2, ...) are solutions to the transcendental equation (w2
ik −

c2i ) tan(wikT )− 2ciwik = 0 and

Aik =

[
1

2

(
1 +

w2
ik

c2i

)
T +

(
w2

ik

c2i
− 1

)
sin(2wikT )

4wik
+

1

2ci
(1− cos(2wikT ))

]1/2
.

A substitution of Eqs. (6.1.33)-(6.1.34) into Eq. (6.1.29) yields the following ana-

lytical expression for the cross-covariances

Kij
km = Bij0

km

[
Bij1

km +Bij2
km cos(wikT ) +Bij3

km sin(wikT )
]

×
[
Bij4

km +Bij5
km cos(wjmT ) +Bij6

km sin(wjmT )
]
,

where

Bij0
km =

c2ije
−T/cij

AikAjmcicj
(
1 + c2ijw

2
ik

) (
1 + c2ijw

2
jm

) , cij =
1

τij
,

Bij1
km = (1 + cicij) e

T/cijwik , Bij2
km = − (1 + cicij)wik ,

Bij3
km = −ci + cijw

2
ik , Bij4

km = (−1 + cjcij)wjm ,

Bij5
km = (1− cjcij) eT/cijwjm , Bij6

km =
(
cj + cijw

2
jm

)
eT/cij .

Similar analytical results can be obtained for regularized exponential covariances

[176]. Clearly, the availability of analytical results for the KL decomposition of each

process fi, significantly reduces the computational cost of the mcKL method.

6.2 Numerical simulation of multiple correlated

processes

In this section we compare the proposed methods, i.e., muKL and mcKL, in terms of

accuracy and computational cost. To this end, we consider multi-correlated random
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f1(t;ω) f2(t;ω)

Figure 6.1: Sample paths of two exponentially correlated random processes f1(t;ω)
and f2(t;ω) generated by using muKL (first row) and mcKL (second row). Shown
are results for D1 = D2 = 1, τ1 = 0.2, τ2 = 1 and different cross-covariance lengths
τ12 and amplitudes D12. It is seen that the sample paths of f2(t;ω) tend to follow
those of f1(t;ω) when τ12 and D12 increase.

processes with both stationary and non-stationary covariances (6.1.2)-(6.1.5) in the

time interval [0, 1]. Unless otherwise stated, we set Di = 1, for all i. We first consider

two exponentially correlated processes, f1(t;ω) and f2(t;ω). Several realizations

(sample paths) of these processes are shown in Figure 6.1 for τ1 = 0.2, τ2 = 1 and

different cross-correlation lengths and amplitudes D12. The truncation dimension in

the muKL and mcKL series expansions (see Eqs. (6.1.22)-(6.1.32)) is set to M = 50

and M1 =M2 = 25, respectively. It is seen that, as we increase the cross-correlation

length and amplitude the samples of f1 and f2 are more and more correlated, i.e.,

they tend to follow the same trend.
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Figure 6.2: Absolute value of the cross correlation coefficients K12
km defined in Eq.

(6.1.29). We see that for non-zero cross-correlation lengths τ12 several coefficients
are activated.

Imposing a cross-covariance between f1 and f2 results in different effects in muKL and

mcKL expansions. In particular, in the muKL framework the cross covariance struc-

ture affects the basis functions φ
(i)
k in Eq. (6.1.14). On the other hand, in the mcKL

framework the cross-covariance affects the correlation coefficients (6.1.29). Specifi-

cally, if the cross-correlation length is non-zero we see that several cross-correlation

coefficients are activated (see Figure 6.2).

Next, we compare muKL and mcKL methods in terms of accuracy. To this end

we consider two correlated random processes with Gaussian covariances and cross-

covariance. First of all, we examine the L2 errors (6.1.21) and (6.1.32) as a function of

the number of expansion terms M , and verify convergence of both muKL and mcKL

expansions. This is done in Figure 6.3 where we show the error of the assembled

covariance kernel for different values of τ1, fixed τ2 = τ12 = 2, and M1 =M2 =M/2.

It is seen that the error depends significantly τ1. In particular, the convergence

of the series becomes slower as τ1 decreases. Despite the smaller error in the first

few dimensions of mcKL expansion, the convergence rate of the muKL expansion is

faster than the mcKL expansion and the overall error is lower as well. The plateau

observed in error plot of the mcKL method for large M is due to the correlation

coefficients K12
ij , which remain of order 10−10 for large k.
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Figure 6.3: L2 error in the assembled Gaussian covariance C̃ by using muKL (left)
and mcKL (right) expansions. Shown are results for different correlation lengths τ1
and fixed τ2 = τ12 = 2. Smaller correlation lengths require more random variables
for a prescribed level of accuracy in both methods. However, muKL shows faster
convergence and smaller errors than mcKL.

τ 1.0 0.2 0.1 0.05 0.02

M (muKL) 2 5 7 13 31
(M1,M2) (mcKL) (2, 1) (3, 2) (6, 3) (11, 6) (25, 13)

Table 6.2: Number of random variables to achieve a truncation error smaller than
3%. The correlation lengths of the processes f1 and f2 are set as τ1 = τ , τ2 = 2τ ,
τ12 = 2τ . We see that the muKL expansion requires less random variables than the
mcKL expansion, in particular for small τ .
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Figure 6.4: L2 errors in representing exponential covariances C1, C2, and C12 by
using muKL (left) and mcKL (right). Here we set τ1 = 1, τ2 = 0.1, τ12 = 1. Note
that the error of C12 decreases monotonically in mcKL but not in muKL. The overall
error is lower in muKL expansion.

In Table 6.2 we summarize the number of random variables in muKL and mcKL

expansions that yield 97% of the total energy of the processes, i.e., M is the trunca-

tion dimension defined by the condition εC̃M < 0.03. As expected, muKL achieves the

same level of accuracy by using less random variables than mcKL (see also Figure

6.3). This is particularly true for weakly correlated processes, i.e. processes with

small correlation length.

Next, we examine the error of exponentially correlated processes. This is done in

Figure 6.4, for the case τ1 = 1, τ2 = 0.1, τ12 = 1. Note that the error decays slower

compared to the Gaussian case. This is due to the fact that the exponential kernel

is less smooth than the Gaussian one [170]. Figure 6.4 also emphasizes different

aspects in the decay of the covariance errors obtained by muKL and mcKL. In fact,

the error in the cross covariance εC12

M decreases monotonically in mcKL, but not

in muKL. Nevertheless, the total error turns out to be smaller by using muKL.

We also apply muKL and mcKL methods to random processes with non-stationary

covariance functions. In particular, we consider fractional Brownian motion (FBM)

and Brownian bridge (BB) processes (see Eqs. (6.1.4)-(6.1.5)). In Figure 6.5 we

show the assembled covariances for the specific cases we consider here, i.e., FBM

and FBM/BB. The truncation dimensions for muKL and mcKL expansions are set
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to M = 48 and M1 = 36, M2 = 12 in FBM, and to M = 54 and M1 = 34, M2 = 20

in FBM/BB. With these parameters the absolute error in the representation of the

covariances in less than 10−2 (see Figure 6.6). Note that that in both muKL and

mcKL methods, the maximum error occurs at the locations where the covariance

function is less smooth. In particular, the mcKL expansion exhibits larger absolute

and L2 errors in the cross-covariance function, which is consistent with previous

results.

FBM FBM/BB

Figure 6.5: Left: Assembled covariance function of two fractional Brownian motion
(FBM) processes with Hurst indexes H1 = 0.4 and H2 = 0.7. The cross covariance is
also of FBM-type with H12 = 0.5 Right: Assembled covariance of two FBM processes
(H1 = 0.4, H2 = 0.5) with Brownian bridge (BB) cross-covariance. In both cases
the correlation amplitudes are set to D1 = 1, D2 = 1 and D12 = 0.5.

6.2.1 Computational cost

The muKL method requires solving an eigenproblem of size nN , where N denotes

the number instants discretizing the time interval [0, T ]. Thus, the computational

cost of muKL is O(n3N3). On the other hand, the mcKL expansion involves n

eigen-decompositions of size N , i.e., O(nN3). In addition, the projection of the

eigenfunctions has to to be computed. The computational cost of this operation is

affected by the truncation dimensions M1 and M2 of the expansions and n, i.e., we

obtain O(MiMjn
2N2). In Figure 6.7 we compare the computation time (in seconds)



157

FBM FBM/BB

m
u
K
L

m
cK

L

Figure 6.6: Absolute errors of muKL (first row) mcKL (second row) in representing
the assembled covariance functions shown in Figure 6.5.

required by muKL and mcKL to decompose n Gaussian correlated random processes

with τi = 0.2 and τij = 1.0. The expansions are are truncated at M = 18n (muKL)

and Mi = 18 (i = 1, ..., n) (mcKL).

6.2.2 Constraints for positive-definiteness

Both muKL and mcKL have to satisfy a positive-definiteness constraint. In fact, the

assembled covariance function (6.1.8) in muKL and the correlation matrix (6.1.30)

of the random variables in mcKL have to be positive-definite. In Figure 6.8 we

show the eigenvalues λk of the assembled exponential covariance kernel (6.1.13) and

the minimum eigenvalue for different choices of the cross-correlation length τ12 and

fixed τ1 = τ2 = 0.1. The existence of negative eigenvalues clearly indicates that

the assembled covariance function is not always positive-definite. The minimum

eigenvalue becomes negative when the cross-correlation length is small compared to

the auto-correlation lengths of both processes. In the present example, this happens
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pansion is scalable and it requires less operations than the muKL.
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Figure 6.8: (a) Eigenvalues λk of the assembled covariance kernel in muKL. (b)
Smallest eigenvalue as a function of the cross-correlation lengths τ12. Here we set
τ1 = τ2 = 0.1. Note that all eigenvalues are positive for τ12 ≥ 0.1.
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when τ12 ≤ 0.1, which coincides exactly with the theoretical condition we obtained

in Eq. (6.1.25). In Figure 6.9, we plot the the set of correlation lengths τ2 and τ12

(a) (b)
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Figure 6.9: Set of correlation lengths τ2 and τ12 satisfying the positive-definiteness
condition (blue circles) for τ1 = 1. We consider exponential covariance kernels in (a)
and (b) and Gaussian covariance kernels in (c) and (d). In (a) and (c) we employ
muKL while in (b) and (d) mcKL. The red line denotes the theoretical constraint
in Eq. (6.1.25) of the muKL expansion. We notice that not only muKL, but also
mcKL satisfies a similar constraint.

satisfying the positive-definiteness condition for exponential and Gaussian covariance

kernels with τ1 = 1. Note that the analytical condition we obtained in Eq. (6.1.25) is

in agreement with the numerical results and it provides a lower bound for τ12, given

τ2. We also study the positive-definiteness constraint for three random processes.

This is done in Figure 6.10 where we plot the level sets of the cross-correlation

lengths τ13 and τ23 for which the minimum eigenvalue of the assembled correlation is

negative. Specifically we set τ1 = 1, τ2 = 2 and τ12 = 5 and consider different values

of τ3. It is seen that the conditions in Eq. (6.1.25) still represent lower bounds for

the cross-correlation lengths.
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Figure 6.10: Three Gaussian random processes. Level sets of the cross-correlation
lengths τ13 and τ23 for which the minimum eigenvalue of the assembled covariance
is zero. In particular, we set τ1 = 1, τ2 = 2 and τ12 = 5 and consider different
τ3. Shown are results of muKL (a) and mcKL (b). The thin dashed lines are the
analytical constraints in Eq. (6.1.25).

6.2.3 Comparison with moPPCA

In the multiple version of the probabilistic principal component analysis (moP-

PCA) [183] we look for a representation of multiple random processes in terms of

a linear combinations of random variables. Therefore this method shares similar

characteristics with the proposed mcKL. However, differently from mcKL, moPPCA

assumes that all the random variables representing the processes are independent,

while mcKL expansion drops such assumption to impose cross-correlation. There-

fore we expect that moPPCA cannot properly represent cross-correlated processes.

In order to show this we consider two exponentially correlated random processes

f1(t;ω) and f2(t;ω) having correlation lengths τ1 = 0.2, τ2 = 1.0, and τ12 equal to 0

and 1.5 as in Figure 6.1. In Figure 6.11 we compare the basis functions of f1(t;ω)

as computed by mcKL and moPPCA. Note that the results of two methods coincide

when f1 and f2 are uncorrelated (τ12 = 0). Also, the eigenfunctions computed by

moPPCA are insensitive to changes in τ12. This suggests that moPPCA cannot

represent cross-correlated random processes.
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Figure 6.11: Basis functions ψ1
1(t), ψ

1
2(t) and ψ1

5(t) (denoted as 1, 2 and 5 for no-
tational convenience) as computed by mcKL and moPPCA. Note the results of two
methods coincide when f1 and f2 are uncorrelated (τ12 = 0). Also, the eigenfunc-
tions computed by moPPCA are insensitive to changes in τ12. This suggests that
moPPCA cannot represent cross-correlated random processes.

6.2.4 Application to a tumor cell growth model

Many recent studies aim at developing simple models of complex systems based on

empirical or historical data [159,219,222]. This is the case, for example, of biological

models described in terms of stochastic differential equations [58, 224]. The muKL

and mcKL methods can be applied in these contexts to find an appropriate repre-

sentation of the random input processes, provided we have available their correlation

structure, e.g., from empirical data. Let us illustrate the procedure with specific ref-

erence to the tumor growth model recently studied by [224]. The governing equation

is 



ẋ(t;ω) = G(x) + g(x)f1(t;ω) + f2(t;ω)

x(0;ω) = x0(ω)

(6.2.1)

where x(t;ω) denotes the tumor cell population at time t,

G(x)
def
= x(1 − θx)− β x

x+ 1
, g(x)

def
= − x

x+ 1
, (6.2.2)

β is the immune rate, and θ is related to the rate of growth of cytotoxic cells. The

random process f1(t;ω) represents the strength of the treatment (i.e., the dosage
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of the medicine in chemotherapy or the intensity of the ray in radiotherapy) while

the process f2(t;ω) is related to other factors, such as drugs and radiotherapy, that

restrain the number of tumor cells. The parameters β, θ and the covariance structure

of the random processes f1 and f2 are usually estimated by using empirical data.

In the present chapter, we assume that f1(t;ω) and f2(t;ω) are cross-correlated

Gaussian processes with zero mean and Gaussian correlation functions given in Eq.

(6.1.3). We also set β = 2.26 and θ = 0.1. The initial condition x0(ω) for the tumor

density is assumed to be a standard Gaussian variable with mean 〈x0(ω)〉 = 7.266

and unit variance. Such mean value corresponds to the state of stable tumor in the

absence of random noise [224]. We represent the random forcing processes f1 and f2

by using both the muKL or mcKL methods. This allows us to solve the stochastic

ODE (6.2.1) with a high-order probabilistic collocation method [212]. We also employ

sparse collocation of level three [135] when the number of random variables in the

forcing terms exceeds four. In Figure 6.12 we show the mean and the standard

deviation of the tumor population x(t;ω) obtained by using mcKL expansions of

random forcing processes with different cross-covariance structure. The dimension

of each random process is at most 12 in all cases. When we set D12 = 0.3, the mean

population decays slower with smaller variance for smaller values of τ12. On the other

hand, if we set τ12 = 1 and change D12, a similar phenomenon happens for larger

values of D12. The mean population decays much faster with increasing variance

when D12 is negative. Similar results are obtained by using mcKL expansion. We

conclude that the solution of the tumor cell growth model is significantly affected by

the cross-covariance structure of the random input processes f1 and f2. Therefore it

is of fundamental importance to have available techniques, such as those developed

in the present chapter, capable of representing effectively the correlation structure

of multiple random processes.
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Figure 6.12: Mean (left column) and standard deviation (right column) of the tumor
population. The covariance kernels of the random processes f1 and f2 are assumed
to be Gaussian with parameters τ1 = τ2 = 0.5, D1 = D2 = 0.1, D12 = 0.3 (first
row) and τ1 = τ2 = 0.5, τ12 = 1, D1 = D2 = 0.1 (second row). Note that the
statistical properties of tumor population are significantly affected by the cross-
covariance structure of the noise.

6.3 Embedding Random Processes by KL expan-

sion

Embedding a random process or a random field over a domain decomposition relies on

representing it locally. This has advantages in terms of dimensionality if the process

has a finite correlation length, as the local representation usually involves a reduced

number of random variables (see figure 6.13 and Table 7.3). Consequently, the global

stochastic problem can be, in principle, reduced to a sequence of local problems of

smaller stochastic dimension. A major challenge when embedding globally defined

processes and fields in a set of subdomains is related to the preservation of global

statistical properties. Indeed, we cannot expect that, in general, the two- or three-

point correlation functions are preserved across different subdomains. This is a
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Figure 6.13: Embedding a stochastic process with finite correlation length into a
non-overlapping covering of [0, 1]: the restriction of the process to each subdomain
Ii can be represented in terms of a small number of random variables.

serious issue, since such multi-point statistics are key elements of the stochastic

solution. In other words, if domain decomposition is not done appropriately in

terms of local expansions and stochastic interface conditions, we may introduce a

systematic error in the solution to the SPDE Eq. (7.0.1).

6.3.1 Local KL expansions

Let us consider a random function f(x;ω), x ∈ D with given mean and covariance

function

〈f(x;ω)〉 = f̄(x), Cov{f(x;ω)f(y;ω)} = C(x, y). (6.3.1)

Given a domain decomposition of D in terms of P overlapping subdomains

{D1, ...,DP}, we would like to represent f(x;ω) locally in each subdomain Di, in such

a way that the two-point statistical properties are preserved, even when computed

across different subdomains. In particular, let us assume that the correlation length

of f(x;ω) is relatively short, compared to the characteristic length of D. Then, it is
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Figure 6.14: One-dimensional domain decomposition with overlapping subdomains.
Shown are the subdomains {Di} used to compute the solution to (7.0.1) and the
subdomains {Ii} used to represent the external random forcing f .

reasonable to assume that the restriction of f(x;ω) to Di is statistically correlated

only with the restriction of f(x;ω) to the neighboring subdomains, say Di−1 and

Di+1 in a one-dimensional setting. This allows us to to represent f(x;ω) in Di by

using a set of random variables that are shared only among adjacent sub-domains.

In order to do so, we introduce a new set of sub-domains {I1, ..., IP ′} to propagate

the correlation structure of f(x;ω) across different Di. For instance, if Di and Di+1

are adjacent, and the correlation length of f is smaller than both |Di| and |Di+1|,

then we could define the sub-domain Ii ⊂ Di ∪ Di+1. In this way, the restriction of

the random process f to Ii allows to propagate the correlation structure of f from

one domain to the other. It is important to remark that the random process f(x;ω)

is first represented locally on the new decomposition {I1, ..., IP ′}, then, later redis-

tributed on {D1, ...,DP} to obtain the solution to the stochastic problem. In general,

{Ii} is different from {Di}, unless the local processes on each Di are statistically in-

dependent, in which case we can take Ii = Di. In general, however, when solving

(7.0.1) we allow for a multi-level domain decomposition. The procedure is illustrated

in Figure 6.14 for two-levels. The overlap between the subdomains {I1, ..., IP ′}, i.e.,

ρ
def
= min

i
|Ii−1 ∩ Ii|

should be chosen to be larger than the correlation length of f(x;ω). This yields

better accuracy when representing f(x;ω) (see appendix for the error analysis). In

the presence of multi-correlated random processes we can use our recently devel-
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Figure 6.15: One-dimensional domain decomposition of [0, 1] into two overlapping
domains {D1,D2} and three expansion intervals {I1, I2, I3} (figures (a) and (b)).
In figures (c) and (d) we show how {I1, I2, I3} partition the domain of a Gaussian
covariance function with constant correlation length lc = 0.08 (figure (c)) and vari-
able correlation length (figure (d)) ranging from 0.08 to 0.02. The overlap ρ between
different Ii is chosen to be larger that the correlation length lc.

oped theory [35], and define a domain decomposition for each random process. At

this point, it is convenient to define an index set Li characterizing the relationship

between the coverings {Ii} and {Di}

Li
def
= {1 ≤ j ≤ P ′ : Di ∩ Ij 6= ∅}, 1 ≤ i ≤ P.

In particular, when we compute in the domain Di, the set Li identifies the subdo-

mains Ij which we should consider for the representation of the external random

noise f(x;ω). For instance, L1 = {1, 2} and L2 = {2, 3} in Figure 6.15.

A One-Dimensional Example

With reference to Figure 6.14, let us consider two overlapping coverings of D,

{I1, ..., In−1} and {D1, ...,Dn} in which Di and Di+1 share the same local repre-

sentation of f(x;ω) in Ii. We first compute the K-L expansion of f(x;ω) on the
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Figure 6.16: Filtered local covariance functions (6.3.3) over three expansion intervals
{I1, I2, I3} as in Figure 6.15(c) and corresponding first four K-L eigenfunctions.

i-th subdomain Ii. To this end, we simply restrict (6.3.1) to Ii and solve the well-

known K-L eigenvalue problem [35,190,191] locally. In order to ensure that the local

expansions preserve global statistical properties on the overlapping region, the local

covariance function Ci(x, y) on Ii is smoothly filtered to zero on (Ii∩Ii+1)
2. In order

words, we define a filter Fi such that

Fi[Ci(x, y)] =





Ci(x, y), (x, y) /∈ (Ii ∩ Ii+1)
2,

Ci(x, y)f(x, y), (x, y) ∈ (Ii ∩ Ii+1)
2,

(6.3.2)

where f(x, y) is a smooth function (e.g., a Gaussian or an arctan function) that decays

to zero toward the boundary of Ii. This allows us to define the following filtered

local covariances





C1(x, y) = F1 [C(x, y)] , x, y ∈ I1,

Ci(x, y) = Fi [C(x, y)− Ci−1(x, y)] , x, y ∈ Ii, (i = 2, ..., P − 2)

CP−1(x, y) = C(x, y)− CP−2(x, y), x, y ∈ IP−1,

(6.3.3)
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As an example, in Figure 6.16 we show the arctan filter applied to a Gaussian

covariance function whose domain has been decomposed into three subdomains as

in Figure 6.15. More generally, we have

C(x, y) =

P−1∑

i=1

Ci(x, y)1Ii×Ii, (x, y) ∈ D ×D. (6.3.4)

Now, the local K-L expansion of f(x;ω) on Ii can be computed by using the

local covariance function Ci(x, y) as

fi(x;ω) =
∞∑

k=1

√
λk,iek,i(x)ξk,i(ω), x ∈ Ii, (6.3.5)

where λk,i and ek,i(x) are eigenvalues and (normalized) eigenfunctions of the integral

equation ∫

Ii

Ci(x, y)ek,i(x)dx = λk,iek,i(y).

The (uncorrelated) random variables ξk,i(ω) can be obtained through projection as

ξk,i(ω) =
1√
λk,i

∫

Ii

fi(x;ω)ek,i(x)dx,

Finally, the approximation of the random function f(x;ω), can be written as a

summation of truncated local K-L expansion as

fM(x;ω)
def
=

P−1∑

i=1

(
Mi∑

k=1

√
λk,iek,i(x)1Iiξk,i(ω)

)
, x ∈ D, (6.3.6)

where Mi is chosen to achieve a prescribed level of accuracy. Thanks to the finite

correlation length of f(x;ω), the number of random variables Mi to represent the

process within each subdomain Ii can be very small (depending on the size of Ii). By

using the decomposition (6.3.6), we have that the solution to the stochastic problem

(7.0.1) in 1D depends on (Mi−1+Mi) random variables on each subdomain Di. Also,
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Figure 6.17: L2 error of the Gaussian covariance with lc = 0.008 by using the decom-
posed K-L expansion on Ii with respect to the number of expansion terms k, where
P is the number of sub-domains (a). For the case of P = 20, the absolute error from
the truncation at k = 10 on ∪i(Ii×Ii) (b) and the absolute error on ∩i(Ii×Ii)c (c)
illustrates εi and εC , respectively.

Di shares Mi−1 and Mi random variables with its adjacent domains Di−1 and Di+1,

respectively.

6.3.2 Convergence Analysis and numerical results

In this section we prove that the local expansion method introduced in section 6.3,

preserves the two-point correlation function of the field across different subdomains.

To this end, let us compute the error in representing the global covariance function
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in terms of local expansions, i.e.,

∥∥∥∥∥C(x, y)−
P−1∑

i=1

Ci(x, y)1
(x,y)
Ii×Ii

∥∥∥∥∥ =
∥∥∥C(x, y)1(x,y)

∩i(Ii×Ii)c

∥∥∥ ≤ O(εC). (6.3.7)

Here εC is an upper bound for C(x, y) which depends on the length of the subdomains

and the overlapping region. The convergence of the local K-L expansion is given by

the usual K-L theorem, provided that the filtered covariance function Ci(x, y) is

smooth and positive semi-definite. In fact, the usual L2 error is obtained as

ε2i
def
=

∫

Ii

〈(
fi(x;ω)−

Mi∑

k=1

√
λk,iek,i(x)ξk,i(ω)

)2〉
dx =

∞∑

Mi+1

λk,i, (6.3.8)

so that each series can be truncated according to the error of the local eigenspectrum.

An upper bound for the error in the covariance function is obtained as

‖C(x, y)− 〈fM (x;ω)fM(y;ω)〉‖ ≤
∥∥∥∥∥C(x, y)−

P−1∑

i=1

Ci(x, y)1
(x,y)
Ii×Ii

∥∥∥∥∥

+

∥∥∥∥∥

P−1∑

i=1

Ci(x, y)1
(x,y)
Ii×Ii

−
(

P−1∑

i=1

Mi∑

k=1

λk,iek,i(x)ek,i(y)1
(x,y)
Ii×Ii

)∥∥∥∥∥

≤
∥∥∥C(x, y)1(x,y)

∩i(Ii×Ii)c

∥∥∥+
∥∥∥∥∥

P−1∑

i=1

(
Ci(x, y)−

Mi∑

k=1

λk,iek,i(x)ek,i(y)

)
1
(x,y)
Ii×Ii

∥∥∥∥∥

≤ O(εC) +
P−1∑

i=1

O(εi).

The first part is due to domain decomposition while the second part is due to the

truncation of the local expansions. If D is bounded and Ci(x, y) are positive semi-

definite, both εC and εi go to zero. This is proved numerically in Figure 6.17(a),

where we plot the the error in the covariance function as the number of subdomains

P increases. In this particular example, the covariance function of f(x;ω) is chosen

to be Gaussian with correlation length lc = 0.008. Compared to the global K-L

expansion (P = 1), the decomposed K-L expansion converges much faster in each
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subdomain as we increase P . This is due to the fact that the relative correlation

length of the process is much larger when we “zoom-in” with domain decomposition

(see Figure 6.13). This implies that the local K-L expansion requires a smaller num-

ber of random variables to achieve the same level of accuracy, making the algorithm

suitable for parallel implementation. However, if we keep increasing the number of

subdomains, ∪i(Ii × Ii) will not be sufficient to cover the whole domain and εC

will increase. The absolute errors arising from the truncation and the restricted

covariance function are plotted in Figure 6.17(b,c) for P = 20 and ρ = 0.03 by

using M = 10 terms. We observe that εC is still small and it is dominated by the

truncation error εi.

6.4 Summary

In this chapter, we proposed two different methods to represent multi-correlated non-

stationary stochastic processes. The first method (muKL) is based on the spectral

decomposition of a suitable assembled process and yields series expansions in terms an

identical set of uncorrelated random variables. A similar strategy has been proposed

in the context of functional principal component analysis by [156]. The second

method (mcKL) relies on expansions in terms of correlated sets of random variables

reflecting the cross-covariance structure of the processes. In some sense, muKL can

be regarded as a combination of KL expansion and orthogonal polynomial methods

[225]. A similar idea was developed independently by [202], but the method is

restricted to the case where the auto-covariances are identical. We demonstrated the

effectiveness and the computational efficiency of the proposed algorithms through

numerical examples involving Gaussian processes with exponential and Gaussian

covariances as well as fractional Brownian motion and Brownian bridge processes.

We found that muKL usually provides better accuracy and convergence rates but it
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is computationally more expensive than mcKL. The latter approach yields scalable

algorithms and it can be applied to cases where the sets of random variables in each

process are different. We used muKL and mcKL approaches to model and simulate

cross-correlated random processes in a stochastic tumor model and found that the

response of the system is significantly affected by the cross-correlation structure

of the noise. More general applications to systems driven by multiple correlated

processes such those arising in the the stochastic modeling of materials and devices

can be readily done.

The effectiveness and the computational efficiently of both methods is discussed

in section 6.2 with an application of muKL to a tumor growth model driven by two

mutually correlated stochastic processes.



Chapter 7

Stochastic domain decomposition

In this chapter, we propose two different stochastic decomposition methods, based on

conditional moment (section 7.1.1) and PDE-constrained (section 7.1.2) interfacing

conditions. In section 7.2, we apply the proposed algorithms to a wide range of

stochastic problems. Specifically, we consider stochastic elliptic problems (section

7.2.1), stochastic advection of scalar fields (section 7.2.2) and nonlinear advection-

reaction problems (section 7.2.3). In addition, the interface methods are employed

to couple distinct PDF models in section 7.3. This PDF decomposition method is

applied to the advection-reaction problem (section 7.3.2).

To this end, we first recall the classical procedure of domain decomposition based

on deterministic Schwarz algorithm and subsequently propose stochastic extensions

where uncertainty is involved. We consider a nonlinear stochastic PDE system in

the form, 



N(x, t, u(x, t;ω);ω) = f(x, t;ω) x ∈ D,

B(u(x, t;ω)) = g(x, t;ω) x ∈ ∂D,
(7.0.1)

where D ⊆ Rd is a bounded spatial domain with boundary ∂D, N is a nonlinear

operator, B is a boundary operator, and ω denotes an element of the sample space

Ω. We assume that the initial/boundary value problem (7.0.1) is well posed for

173
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Diffusion N(x, t, u;ω) = ∇a(x;ω) · ∇u+ a(x;ω)∇2u

Advection N(x, t, u;ω) =
∂u

∂t
+ V (x;ω)∇u

Advection-Reaction N(x, t, u;ω) =
∂u

∂t
+ V (x)∇u− k(x;ω)(1− u2)

Table 7.1: Examples of nonlinear operators N appearing in Eq. (7.0.1). These
equations are studied numerically in section 7.2 by using the new stochastic domain
decomposition algorithms proposed in section 7.1.1 and section 7.1.2.

every realization of the random forcing term, random boundary and random initial

condition. Examples of N are given in table 7.1 The domain D is decomposed into

an a set of P overlapping domains {D1, ...,DP} such that

D =

P⋃

i=1

Di. (7.0.2)

where the overline denotes the closure set, i.e., D = D∪∂D. Let Γi be the boundary

of Di lying in the interior of D, and let Ni be the index set of the neighboring

domains, i.e.,

Γi
def
= ∂Di \ ∂D, Ni

def
= {1 ≤ j ≤ P | Dj ∩ Di 6= ∅} .

For example, in one-dimensional spatial domains we haveN1 = {2},Ni = {i−1, i+1}

(1 < i < P ), and NP = {P − 1}. In this chapter we assume that {Di}Pi=1 is an

overlapping covering of D, so that we can impose Dirichlet boundary condition when

performing Schwarz iterations. More general boundary conditions of Robin-type can

be implemented as well, e.g., in the context of optimized Schwarz algorithms (see

section 7.1).

A classical domain decomposition method for the SPDE (7.0.1) is summarized
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begin
n = 1;
initialize {u0i }Pi=1 at random;

while ‖un−1 − un‖x∈D > ε or
∥∥uni − unj |j∈Ni

∥∥
x∈Γi

> ε do

for 1 ≤ i ≤ P do
solve

Ni(x, t, u
n
i (x, t;ω);ω) = fi(x, t;ω), x ∈ Di,

B(uni (x, t;ω)) = g(x, t;ω), x ∈ ∂Di \ Γi, (7.0.3)

B(uni (x, t;ω)) = g̃(x, t;ω), x ∈ Γi,

end
n = n+ 1 ;

end

end
Algorithm 2: Domain decomposition with overlapping domains.

in Algorithm 2. At the n-th iteration, the algorithm consists of P substeps in which

we solve the restricted PDE system on Di (i = 1, ..., P ), where Ni and fi are the

restrictions of N and f on Di. The artificial boundary condition g̃ on Γi is taken

from the solution among the neighboring domains {Dj}j∈Ni
at previous iteration,

that is, {umj
∣∣
Γi

: j ∈ Ni, m = n − 1 or n}. Within each iteration, the local system

must be solved in a predetermined sequence {jk}Pk=1, and if unj |Γi
is not available

for g̃, we use un−1
j |Γi

from the previous iteration. This completes the description

of the domain decomposition algorithm in the spatial domain. But how do we

solve the stochastic problem in the decomposed domain {D1, ...,DP}? The first step

is to represent the stochastic solution to (7.0.1) or (7.0.3) appropriately. This is

a crucial step in stochastic domain decomposition, as local stochastic expansions

usually do not preserve global multi-point statistical properties (see section 6.3).

If we follow a naive approach, we can simply discretize (7.0.1), e.g., in terms of

probabilistic collocation [60, 61, 130], polynomial chaos [204, 213], or reduced basis

methods [54], and then apply the domain decomposition algorithm 2, say to each

sample of (7.0.1). Although this might have advantages in parallel computations [53],
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it does not overcome the dimensionality problem of the random space. Indeed, a

global stochastic approach applied to (7.0.1) does not exploit the low-dimensional

stochastic structure of the local solution within each subdomain Di. Such low-

dimensional structure is a consequence of the finite correlation lengths of the solution

field.

Thus, our goal is to develop new SDD algorithms that exploit the advantages of

both domain decomposition in spatial domain as well as low-dimensional stochastic

structures of the solution within each subdomain. These methods are based on a

local representation of the stochastic solution, which is chosen to preserve multipoint

statistical properties across different domains.

7.1 Interfacing Subdomains

The choice of the interface condition between different subdomains is an open ques-

tion in stochastic domain decomposition methods. No rigorous theory has yet been

developed for interfaces defined in terms of functionals of a stochastic field, e.g.,

mean, variance or multi-point correlations, although this is of fundamental impor-

tance when we are interested in propagating uncertainty across different subdomains

efficiently. Indeed, interfacing the whole stochastic field, e.g., through Monte Carlo

or sparse collocation approaches [53,54] is prohibitively expensive, since the interface

operator (e.g., Schwarz iterations) has to be applied to each sample. On the other

hand, if we interface only low-dimensional functionals of the stochastic solution, e.g.,

few statistical moments, then we obtain a tremendous reduction in computational

cost at the expense of an accuracy loss. In this section we propose two new SDD

algorithms that exploit this basic idea, i.e., interfacing only low-dimensional func-

tionals of the solution in different subdomains. Specifically, the first algorithm uses

an interface condition between subdomains defined in terms of a set of conditional
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moments (section 7.1.1) . The second algorithm, on the other hand, simultaneously

interfaces multiple functionals of the stochastic solution, such as the first few statis-

tical moments, by using PDE-constrained optimization (section 7.1.2). The accuracy

of both methods is assessed section 7.2.

7.1.1 Conditional Moment Interface Method

Our first algorithm is based on interfacing moments or cumulants of the stochastic

solution across different subdomains by using Schwarz methods. These are well-

established for deterministic problems and convergence results can be found in several

books [98, 154, 173, 187], and reviews [215, 216]. For example, it has been found

that the convergence rate of the classical Schwarz method is rather slow and very

much dependent on the extent of the overlap between different subdomains. To

overcome these drawbacks, new classes of Schwarz methods were proposed in recent

years, e.g., optimized Schwarz methods. These new algorithms are based on a more

effective transmission of information at interfaces between subdomains. For instance,

Robin-Robin conditions [69] and conditions expressed in terms on non-local operators

[42, 66, 67, 79] can yield convergence without overlap.

In the conditional moment interface method, we set the interface condition be-

tween different subdomain by using conditional statistical moments, which can be

easily computed by using the random variables representing the K-L expansion in

the overlapping region. We denote such random variables as ξξξi = (ξi,1, · · · , ξi,Mi
)

and the aforementioned conditional average as

〈u(x;ξξξj , ξξξi)|ξξξi)〉 def=
∫

Ξj

u(x;aj,ai)pξj |ξi(aj|ai)daj,

where pξj |ξi(aj |ai) is the probability density of ξj given ξi The boundary condition



178

in Eq. (7.0.3) that preserves the k-th conditional moment can be expressed as

〈
uni (x;ω)

k
∣∣ ξξξj
〉
=
〈
g̃(x;ω)k

∣∣ξξξj
〉
, x ∈ Γi, j = i− 1 or i. (7.1.1)

Clearly, the stochastic solution satisfying such boundary condition is not unique. One

simple idea is to impose the same conditional mean for fixed ξξξi over all collocation

points of ξξξi+1, i.e.,

g̃(x; ·, ξξξi) =
〈
un−1
i+1 (x;ξξξi, ξξξi+1)

∣∣ξξξi)
〉
. (7.1.2)

Although this scheme satisfies Eq. (7.1.1) for k = 1, we found out that it dissipates

excessively the variance at the boundary. Thus, we propose hereafter several cor-

rections in order to mitigate this effect and achieve better accuracy for higher-order

moments.

To this end, we first introduce the mean-shifted boundary condition, which ba-

sically sets the mean of the solution at the subdomain boundaries to be coincident

with the mean computed from the adjacent subdomain. The following boundary

condition is then imposed

g̃ni [1](x;ξξξi−1, ξξξi)
def
= un−1

i (x;ξξξi−1, ξξξi)−
〈
un−1
i (x;ξξξi−1, ξξξi)

∣∣ξξξi)
〉

+
〈
un−1
i+1 (x;ξξξi, ξξξi+1)

∣∣ ξξξi)
〉
. (7.1.3)

Note that (7.3.3) satisfies Eq. (7.1.1) for k = 1, and at the same time it does

not affect the variance of the solution within the subdomain. This overcomes the

variance dissipation arising from the simpler boundary condition (7.1.2). A further

improvement of the interface condition can be obtained by using second-order sta-

tistical properties. We shall call it variance scaling boundary condition, and it relies
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in setting

g̃ni [2](x;ξξξi−1, ξξξi)
def
=

(
un−1
i (x;ξξξi−1, ξξξi)−

〈
un−1
i (x;ξξξi−1, ξξξi)

∣∣ξξξi)
〉) σn−1

i+1

σn−1
i

+
〈
un−1
i+1 (x;ξξξi, ξξξi+1)

∣∣ξξξi)
〉
, (7.1.4)

where σn−1
i and σn−1

i+1 are standard deviations defined as

σn
i (x;ξξξi−1, ξξξi|ξξξi) def

=
[
〈uni (x;ξξξi−1, ξξξi)|ξξξi)2〉 − 〈uni (x;ξξξi−1, ξξξi)|ξξξi)〉2

]1/2
.

Note that this condition satisfies Eq. (7.1.1) for both k = 1 and 2, but it may lead to

unstable Schwarz iterations due to the division by σn
i . To avoid such instabilities, we

combine (7.3.3) and (7.3.4) into one Algorithm. This yields the conditional moment

interface method whose steps are summarized in Algorithm 3 for two domains D1

and D2. In such algorithm g̃nr [1](x;ω) = g̃n1 [1](x;ξξξ1, ξξξ2), g̃
n
r [2](x;ω) = g̃n1 [2](x;ξξξ1, ξξξ2),

and the left-end boundary conditions for D2 are

g̃nl [1](x;ω)
def
= un−1

2 (x;ξξξ2, ξξξ3)−
〈
un−1
2 (x;ξξξ2, ξξξ3)

∣∣ ξξξ2)
〉
+ 〈un1(x;ξξξ1, ξξξ2)|ξξξ2)〉 ,

g̃nl [2](x;ω)
def
=
(
un−1
2 (x;ξξξ2, ξξξ3)−

〈
un−1
2 (x;ξξξ2, ξξξ3)

∣∣ ξξξ2)
〉) σn−1

2

σn
1

+ 〈un1 (x;ξξξ1, ξξξ2)|ξξξ2)〉 .

We start the iterative sequence by using the mean boundary condition (7.3.3),

and iterate until a prescribed tolerance ǫ in achieved on the residual

‖un∗

(x;ω)− un∗−1(x;ω)‖/‖un∗−1(x;ω)‖ < ǫ

We call n∗ the transition iteration, ǫ the transition threshold, and denote the com-

puted boundary condition as g̃n
∗

i [1](x;ξξξi−1, ξξξi). After the transition iteration, we
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begin
n = 1 ;
initialize {u0i }2i=1 at random;
while ‖un−1 − un‖x∈D > ε or ‖un1 − un2‖x∈D1∩D2

> ε̄ do
solve

N1(x, t, u
n
1 (x, t;ω);ω) = f1(x, t;ω), x ∈ D1;

B(un1 (x, t;ω)) = g(x, t;ω), x ∈ ∂D1 \ Γ1;

N2(x, t, u
n
2 (x, t;ω);ω) = f2(x, t;ω), x ∈ D2;

B(un2 (x, t;ω)) = g(x, t;ω), x ∈ ∂D2 \ Γ2;

if ‖un−1 − un‖x∈D > ǫ then
B(un1 (x, t;ω)) = g̃nr [1](x, t;ω), x ∈ Γ1

B(un2 (x, t;ω)) = g̃nl [1](x, t;ω), x ∈ Γ2

n∗ = n
else

B(un1 (x, t;ω)) = wg̃n∗r [1](x, t;ω) + (1− w)g̃nr [2](x, t;ω), x ∈ Γ1

B(un2 (x, t;ω)) = wg̃n∗l [1](x, t;ω) + (1− w)g̃nl [2](x, t;ω), x ∈ Γ2

end

n = n+ 1 ;

end

end
Algorithm 3: Conditional moment interface method.
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switch the boundary condition to the following weighted one

uni (x;ξξξi−1, ξξξi) = wg̃n
∗

i [1](x;ξξξi−1, ξξξi) + (1− w)g̃ni [2](x;ξξξi−1, ξξξi), (7.1.5)

where w ∈ [0, 1], is the weight between the converged solution from the mean shift-

ing boundary condition and the new solution from variance scaling. Note that the

condition (7.1.5) is equivalent to the mean shifting condition (7.3.3) in the limit

w → 1.

7.1.2 PDE-Constrained Interface Method

An alternative method to preserve statistical properties of the solution across dif-

ferent domains relies on optimization. In practice, we minimize suitable (nonlinear)

functionals measuring the error of the random solution at the boundary of different

overlapping domains. In each subdomain Di we solve local problem (7.0.3), while

the boundary conditions g̃ = (g̃1, g̃2, · · · , g̃n) are stochastic and usually unknown.

By using a PDE-constrained optimization method, we can set an interface condi-

tion between different subdomain that preserves continuity of the first k statistical

moments or cumulants. To this end, we first define the object function

J (g̃) =
n−1∑

i=1

R∑

r=1

‖µr(ui(x, t; g̃i)1Di∩Di+1
)− µr(ui+1(x, t; g̃i+1)1Di∩Di+1

)‖2, (7.1.6)

where ‖ · ‖2 is the L2 norm on physical space, and µr is defined as

µr(u) =





〈u〉 , r = 1,

〈(u− 〈u〉)r〉 , r > 1.

(7.1.7)
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Then we solve the PDE-constrained optimization problem

min
g̃
J (g̃) s.t. Eq. (7.0.3) holds. (7.1.8)

Note that in each subdomain Di the solution ui is determined by fi, g̃i and Ni.

Therefore, given fi and Ni, the solver in each Di is a mapping Fi : g̃i 7→ ui. Since

g̃i is a random variable, we can represent it in a gPC expansion and identify its

coefficients or identify the value of g̃i at specific collocation points. More specifically,

if g̃ is represented by the gPC expansion

g̃i =

Mi∑

m

cimψim(x),

then Eq.(7.1.6) can be rewritten as

J (c1, c2, · · · , cn) =
n−1∑

i=1

R∑

r=1

‖µr(ui(x, t; ci)1Di∩Di+1
)− µr(ui+1(x, t; ci+1)1Di∩Di+1

)‖2,

(7.1.9)

where ci = (ci,1, ci,2, · · · , ci,Mi
). Note that here we build a mapping in each subdo-

main as F † : ci 7→ ui. Similarly, if we track the value of g̃i at collocation points

si = (si,1, si,2, · · · , si,Zi
), we can find a mapping from the samples of g̃i to the mo-

ments of ui, i.e., F
∗ : si 7→ µr(ui). This allows us to minimize J with respect to

s:

J (s1, s2, · · · , sn) =
n−1∑

i=1

R∑

r=1

‖µr(ui(x, t; si)1Di∩Di+1
)− µr(ui+1(x, t; si+1)1Di∩Di+1

)‖2,

(7.1.10)

The object function can also take the weighted form

J (g̃) =
n−1∑

i=1

R∑

r=1

wr‖µr(ui(x, t; g̃i)1Di∩Di+1
)− µr(ui+1(x, t; g̃i+1)1Di∩Di+1

)‖2, (7.1.11)
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to account for possible different magnitudes in the statistical moments or cumulants.

The SPDE-constrained optimization algorithm is summarized in Algorithm 4.

begin
1. Initialize ci with the results of deterministic problem. ;
2. Prepare SPDE solver in each subdomain Di, i.e., set the mapping
F † : ci 7→ ui. ;
3. Set object function J (c1, c2, · · · , cn) in 7.1.2 and choose appropriate
weights wr defining the weighted norm, if necessary. ;
4. Solve the optimization problem minJ (c1, c2, · · · , cn) with constraint
Eq. (7.0.3).

end
Algorithm 4: PDE-constrained interface method.

7.2 Numerical Results

In this section we apply the stochastic domain decomposition algorithms proposed

in section 7.1.1 and section 7.1.2 to different stochastic problems. Specifically, we

consider elliptic problems with random diffusion coefficients, advection problems

for scalar fields with random advection velocity, and nonlinear advection-reaction

problems with random reaction rate (see Table 7.1).

7.2.1 Stochastic Elliptic Problem

Let us consider the stochastic elliptic problem

− d

dx

(
a(x;ω)

du(x;ω)

dx

)
= sin(2πx) u(0;ω) = u(1;ω) = 0 x ∈ [0, 1],

(7.2.1)

where the diffusion coefficient a(x;ω) is assumed to be a random process satisfying

〈a(x;ω)〉 = 1, Cov{a(x;ω), a(y;ω)} = σ2
a exp

[
−|x− y|

2

l2c

]
. (7.2.2)
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In particular, we study constant as well as variable correlation lengths lc, as in

Figure 6.15(c,d). The stochastic problem (7.2.1) has been extensively studied in

the past by using different methods, e.g., stochastic collocation or Wick-Malliavin

approximations [6, 200]. Recently, Elman et al. [53, 54] proposed a domain decom-

position method in spatial domain and reduced basis collocation in stochastic space

to solve (7.2.1). Such approach was shown to be effective, but it does not exploit

the relation between the correlation length of the random diffusivity and the domain

decomposition. Hereafter we follow our new approach that has such property, and

demonstrate its effectiveness. To this end, we consider the following overlapping

covering of the spatial domain [0, 1] in terms of two subdomains {D1,D2}. By us-

ing our local K-L expansion method (section 6.3), we embed the random function

a(x;ω) into the set of subdomains Ii shown in Figure 6.15(a,b). This yields a set of

sub-processes in the form (6.3.5), which allows us to construct local reduced-order

stochastic representations of a(x;ω) preserving second-order statistical properties

(see section 6.3.2). Specifically, we assume that the random variables ξξξi(ω) are uni-

form in [−1, 1] on each Ii, and that σa = 0.2 in (7.2.2). The solution on Di can

be written as ui(x;ω) = ui(x;ξξξi(ω), ξξξi+1(ω)); ξξξ2(ω) are the random variables shared

between the sub-domains. The spatial domain D is discretized by using 10 spec-

tral elements of order 10, and we consider a probabilistic collocation method (tensor

product or sparse grid) for the random space.

In Figure 7.1 we compare the first four moments computed by the global K-L and

the decomposed K-L expansion for random diffusion coefficients a(x;ω) with variable

correlation length. The domain decomposed solution is computed by using the SDD

algorithm with mean boundary condition (SDD-M) - Eq. (7.3.3). We have found

that although we are interfacing the subdomain D1 and D2 only through the mean

field, the decomposed solution basically coincides with the global one just after few

iterations. Specifically, the result of Figure 7.1 are obtained at the fourth iteration.
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Figure 7.1: Stochastic elliptic problem. Statistical moments of the solution corre-
sponding to random diffusion coefficients with variable correlation length. Refer-
ence solution (black line); Results from the conditional moment (SDD-M) interface
method (red circles) and the PDE-constrained interface method (blue x). It is seen
that the solution computed by the proposed domain decomposition methods is ac-
curate.
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Figure 7.2: Stochastic elliptic problem. (a) Relative L2 error in the first four moments
as computed by the conditional mean (SDD-M) and conditional standard deviation
(SDD-S) algorithms with w = 0.2 and ǫ = 10−3. (b) Relative error versus the weight
w for fixed ǫ = 10−4. It is seen that the SDD-S algorithm improves the accuracy of
higher-order statistical moments in the range 0.2 ≤ w ≤ 0.5.
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Figure 7.3: Stochastic elliptic problem. Relative L2 error in the first four moments
(a-d) for different transition thresholds ǫ. The threshold determines the accuracy
and number of iteration for convergence, hence, it must be selected by taking into
account the target error level.
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error in
〈
uk
〉

k = 1 k = 2 k = 3 k = 4

Decomposed K-L 9.1666e-05 1.5549e-04 1.8446e-04 1.8044e-04

Conditional moment method 2.9514e-04 1.0076e-03 1.7654e-03 2.8584e-03

PDE-constrained method 7.4173e-04 2.9523e-03 4.7312e-03 7.7749e-03

Table 7.2: Stochastic elliptic problem. Relative L2 errors in the first four statistical
moments and the standard deviation of the solution computed by using the condi-
tional moment and the PDE-constrained interface methods. The decomposed K-L
method provides the lower bound for relative error that we can achieve in this case
by using the domain decomposition algorithm.

Convergence of Schwarz iterations obtained by using the mean field interface method

(SDD-M) - Eq. (7.3.3) - and the standard deviation interface method (SDD-S) - Eq.

(7.1.5) - is shown in Figure 7.2(a), for w = 0.2 and ǫ = 10−3. It is seen that the L2

error in the fourth moment, which is the largest one, becomes less than 1% after the

third iteration. Also, the SDD-S method turns out to be more accurate that SDD-M,

most likely because it takes advantage of higher-order statistical information. We

have also performed convergence studies in terms of other parameters appearing in

the conditional moment interface method, in particular the transition threshold ǫ

and w. The results are summarized in Figure 7.2(b) and Figure 7.3. In particular, in

Figure 7.2(b) we plot the L2 error of the SDD solution versus w for fixed ǫ = 10−4.

It is seen that there exist an optimal value of w lying near w = 0.2, which coincides

with the magnitude of the noise σa. Thus, a good choice for w is the ratio between

the mean 〈a(x;ω)〉 and σa. Also, as we mentioned in section 7.1.1, in the limit

w → 1 the SDD-S method is equivalent to SDD-M (note that the error plots are

superimposed for w = 1). The effects of the transition threshold on the convergence

of Schwarz iterations is shown in Figure 7.3 for ǫ = 10−2, 10−3, and 10−4. We found

that the solution computed with smaller ǫ is more accurate but it exhibits a slower

convergence rate. Thus, ǫ determines both accuracy and convergence of the Schwarz
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Figure 7.4: Stochastic elliptic problem. Comparison between the relative L2 errors
of the conditional moment interface method (–) and the PDE-constrained interface
method (-) for constant lc = 0.08 (a) and variable lc (b). The conditional moment
interface methods is more accurate than the PDE-constrained interface method, and
it requires less computational time.

iterations. The errors using ǫ = 10−2 are the largest, but still bounded by 10−2. In

Table 7.2 and Figure 7.4 we compare the relative L2 errors obtained by using the

conditional moment and PDE-constrained interface methods. Specially, we consider

the problem (7.2.1) with random diffusion coefficient of correlation length lc = 0.08.

In all cases, it is seen that the conditional moment interface method is more accurate

than the PDE-constrained interface method, and it also has a lower computational

cost (see section 7.4). In addition, the error in the standard deviation computed by

the SDD-S method is 3.4992 · 10−2, while in the PDE-constrained method we obtain

1.20202 · 10−1.

Extension to Multiple Subdomains So far we solved the stochastic elliptic

problem (7.2.1) in an overlapping covering with of [0, 1] with only two subdomains

D1 and D2. Now we consider the extension of the SDD algorithms to multiple

subdomains {D1, ...,DP} and {I1, ..., IP+1}, with P = 5, 10 or 20. In particular, we

set

Di = [xi−1 − δ′, xi + δ′], Ii = [xi−1 + ρ′, xi+1 − ρ′], (7.2.3)
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P 1 5 10 20

‖Ii‖ 1 0.2 0.1 0.05

Mi 119 23 12 6

Table 7.3: Stochastic elliptic problem. Length of Ii and number of random variables
Mi in the local K-L expansion within each Ii as a function of the total number of
subdomains P . Here Mi is determined by setting a threshold of 5% in the error of
the second order moment computed by the truncated K-L series.

where {xi}Pi=0 are points in [0, 1], while δ′ and ρ′ are positive numbers determining

the overlapping region (See Figure 6.14). When {xi}Pi=0 are uniformly spaced, with

spacing ∆x (i.e., xi = i∆x), then the overlapping region is δ = |Di ∩ Di+1| = 2δ′

and ρ = |Ii ∩ Ii+1| = ∆x− 2ρ′. We recall that the length of the expansion intervals

2∆x and the overlapping length ρ should be selected by taking into account the

correlation length of the diffusion coefficient, here set to lc = 0.008. Thus, we

choose δ′ and ρ′ in order to obtain ρ = 0.04, 0.04, and 0.03 for P = 5, 10, and 20,

respectively. Thanks to the finite correlation length of the diffusion coefficient, we

have the number of terms in the local K-L expansion decrease significantly when we

increase the number of subdomains (see Table 7.3). This allows us to solve a sequence

of local low-dimensional problems when performing Schwarz iterations. Convergence

of the conditional moment interface algorithm is shown in Figure 7.5, where plot the

relative L2 error of the first- and fourth-order moment. Note that as we increase the

number of subdomains P , the convergence rate deteriorates.

7.2.2 Stochastic Advection

Let us consider the time-dependent stochastic advection problem,

∂u(x, t)

∂t
= −a(x;ω)∂u(x, t)

∂x
, x ∈ [0, 1], t ≥ 0, (7.2.4)
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Figure 7.5: Stochastic elliptic problem. Relative L2 error in the first- and fourth-
order moment versus the iteration number in SDD-M method. Shown are results for
different numbers of subdomains P .
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Figure 7.6: Stochastic advection problem. First four statistical moments of the
solution The reference solution (black line) is compared with the SDD-S method
(red line) and the PDE-constrained interface method (blue line) at two different
times: t = 0.1 (red square, blue x) and t = 1.0 (red circle, blue +)
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Figure 7.7: Stochastic advection problem. Standard deviation of the solution at t =
0.5. We show results obtained by using the conditional moment interface methods:
SDD-M (red x), SDD-S (red o) and the PDE-constrained method (blue +). In
particular, in (a) we study the case where the random advection velocity has variable
correlation length ranging from from 0.05 to 0.2. The case with constant correlation
length is shown in (b).

with initial condition u(x, 0) = sin(2πx). The mean velocity is set to 〈a(x;ω)〉 = π/2

and the covariance function is assumed to be as in Eq. (7.2.2) with σa = π/10. We

consider both Gaussian covariances shown in Figure 6.15(c,d), i.e., with constant and

variable correlation lengths, and represent a(x;ω) by using the expansion method dis-

cussed in section (6.3). Regarding the boundary conditions, we set periodic boundary

conditions u(0) = u(1) for the case of constant correlation length, and a Dirichlet

condition u(0) = sin(−t) for variable correlation lengths. In Figure 7.6 we plot the

first four moments of the solution to (7.2.4) as computed by the SDD-S and the

PDE-constrained interface methods, for the case where the advection velocity has

constant correlation length lc = 0.08. Here we set ǫ = 10−2 and w = 0.1 in the

SDD-S algorithm. It is seen that both methods yield accurate statistical moment up

to t = 1.0 (see also Figure 7.8). In Figure 7.7 we study the standard deviation of the

solution at t = 0.5, for advection velocities with variable and constant correlation

lengths. In the latter case, Figure 7.7(b), we see that the SDD-S algorithm provides

more accurate results than SDD-M, by preserving the periodicity of the standard

deviation. This can be achieved because the SDD-S method interfaces subdomains
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Figure 7.8: Stochastic advection problem. Relative L2 errors in the first four statis-
tical moments of the solution versus time. We show results computed by using the
moment interface SDD-S (−) and the PDE-constrained (−·−) methods for the cases
of constant correlation length (lc = 0.08) and periodic boundary conditions (a), and
variable correlation length ranging from from 0.2 to 0.05 and Dirichlet boundary
condition (b).

by using information from the standard deviation.

7.2.3 Stochastic Advection-Reaction

In this last example we consider the application of our stochastic domain decom-

position methods to a nonlinear problem, i.e., an advection-reaction problem with

nonlinear reaction term and stochastic reaction rate. In particular, we consider the

following model problem

∂u

∂t
= V (x)

∂u

∂x
+ (k0(x) + σkk1(x;ω))R(u), (7.2.5)

where

V (x) = −1
2

(
1 + e(sin(2πx)+cos(2πx))/2 − cos(2πx)

)
,

k0(x) = 1− 2

5

(
e− sin(2πx)/2 + cos(2πx)

)
,

σk = 0.2, R(u) = 1−u2, with I.C. u0(x) = sin(2πx) and periodic B.C.. This problem

was proposed and studied in [195] by using Mori-Zwanzig projection operator meth-
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Figure 7.9: Stochastic advection-reaction problem. First four statistical moments
of the solution to the advection reaction equation (7.2.5). The reference solution
(black line) is compared with the SDD-Mmethod (red line) and the PDE-constrained
interface method (blue line) at two different times: t = 0.5 (red triangle, blue x) and
t = 1.0 (red circle, blue +).
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Figure 7.10: Stochastic advection-reaction problem. Relative L2 errors in the first
four statistical moments of the solution to the the stochastic advection reaction
problem (7.2.5) versus time. We show results computed by using the moment inter-
face SDD-M (−) and the PDE-constrained (− · −) methods for the case of variable
correlation length.
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ods (see also [180, 197]). The perturbation in the reaction rate, k1(x;ω) is modeled

as Gaussian random field with Gaussian covariance function and correlation length

varying from 0.2 to 0.05. The results of our simulations are shown in Figure 7.9

where we plot the first four moments of the stochastic solution at different times, as

obtained by using the SDD-M and PDE-constrained interface method. The relative

L2 error of such moments is plotted in Figure 7.10 versus time. It is seen that both

algorithms are accurate also for nonlinear problems.

7.3 Interface methods of PDF systems

In this section, we develop stochastic domain decomposition method to propagate

uncertainty across heterogeneous PDF models. We employ similar methodologies

presented in section 7.1 to the interface problem between distinct PDF systems.

Let us write the local PDF system on the i-th subdomain Di as

Li(pi(a, bi, x; t), a, bi, x; t) = fi(a, bi, x; t), x ∈ Di

B(pi(x, a, bi, t)) = g(x, a, bi, t)), x ∈ ∂Di ∩ ∂D (7.3.1)

B(pi(x, a, bi, t)) = g̃i(x, a, b, t), x ∈ Γi,

where x is the physical variable, a ∈ Rn is the response variable, bi ∈ Rmi are the

excitation variables on Di. The coupling problem between distinct PDF systems re-

duces to imposing an appropriate boundary condition g̃i(x, a, b, t) on the subdomain

boundary Γi.
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Figure 7.11: Range of PDF evolution equation according to the correlation length
of the random excitation.

7.3.1 Schwarz algorithm between PDF models

We denote the marginalization of the variables bi as

〈p(x, a, bi)〉bi
def
=

∫

Ξi

p(x, a, bi)dbi.

The boundary condition that impose continuity of the response PDF can be ex-

pressed as

〈p(x, a, bi)〉bi = 〈p(x, a, bj)〉bj , j ∈ Ni. (7.3.2)

Clearly, the stochastic solution satisfying such boundary condition is not unique.

We first introduce the mean-shifted boundary condition, which sets the marginal-

ized response PDF on the subdomain boundary to be coincident with the one com-

puted from the adjacent subdomain. The boundary condition imposed on x ∈ Γi∪Dj

for j ∈ Ni is as follows.

g̃ni [1](x, a, bi)
def
= pni (x, a, bi)− 〈pni (x, a, bi)〉bi +

〈
pnj (x, a, bj)

〉
bj
. (7.3.3)

Note that (7.3.3) satisfies Eq. (7.3.2), and at the same time, does not alter the vari-

ance of the PDF with respect to the bi variables within Di. A further improvement of

the interface condition can be obtained by using second-order statistical properties.
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We shall call it variance scaling boundary condition, and it relies on setting

g̃ni [2](x, a, bi)
def
=
(
pni (x, a, bi)− 〈pni (x, a, bi)〉bi

) σn
bj

σn
bi

+
〈
pnj (x, a, bj)

〉
bj
, (7.3.4)

where σn
bi
is a standard deviation defined as

σn
bi(x, a)

def
=
[
〈pni (x, a, bi)2〉bi − 〈pni (x, a, bi)〉2bi

]1/2
.

This condition guarantees continuity up to the second order statistics in the exci-

tation dimension. However, it may lead to unstable Schwarz iterations due to the

division by σn
i . To avoid such instabilities, we combine (7.3.3) and (7.3.4) into one

Algorithm. This yields the conditional moment interface method whose steps are

summarized in Algorithm 5, with a weight function w(n) ∈ [0, 1]. The two boundary

conditions g̃ni [1] and g̃
n
i [2] are leveraged by decreasing w(n) from w(0) = 1.

begin
initialize {p0i }Pi=1 at random;

while
∥∥〈pni 〉bi − 〈pnj 〉bj |j∈Ni

∥∥
a∈R,x∈Γi

> ε do

for 1 ≤ i ≤ P do
solve

Li(p
n
i (x, a, bi, t), a, bi, x, t) = fi(x, a, bi, t), x ∈ Di,

B(pni (x, a, bi, t)) = g(x, a, bi, t)), x ∈ ∂Di \ Γi,

B(pni (x, a, bi, t)) = w(n)g̃n−1
i [1](x, a, bj |j∈Ni

, t) (7.3.5)

+(1 − w(n))g̃n−1
i [2](x, a, bj |j∈Ni

, t), x ∈ Γi,

n = n+ 1 ;

end

end

end
Algorithm 5: Domain decomposition of distinct REPDF systems. The moment
interface condition imposed on Γi couples the local excitation space on each subdo-
main. Here, the mean shifting and variance scaling condition is leveraged through
the weight function w(n), and iterated until the response PDF on the interface has
converged.
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7.3.2 Numerical simulation of advection-reaction equation

Reactive transport in a porous medium involving a heterogeneous reaction between

dissolved species and solid is modeled by the stochastic advection-reaction equation.

The evolution of the solute concentration c(x, t) defined on x ∈ D is described as

∂c

∂t
= −∇ · (vc) + Dafκ(c), fκ(c) = −ακ(cα − 1), (7.3.6)

where α is the stoichiometric coefficient, Da is the Damköhler number, κ is the

reaction rate constant, and v is the macroscopic flow velocity. Let us consider the

random reaction rate to be exponentially correlated with correlation length ℓ with a

positive constant mean K, i.e.,

〈κ(x;ω)〉 = K, 〈κ(x;ω)κ(y;ω) = σ2
κ

2ℓ
e−|x−y|/ℓ. (7.3.7)

By using the K-L expansion, κ(x;ω) can be represented in a series expansion form

based on uniform random variables as following,

κ(x;ω) = K +

√
3σκ√
2ℓ

N∑

j=1

√
θjξj(ω)φj(x).

where ξj(ω) are zero-mean independent uniform random variables on [−1, 1] and the

quantities θj and φj(x) denote the eigenvalues and eigenfunctions computed by the

K-L expansion.

The PDF of the solution c(x, t) can be computed by the REPDF approach solving

for

p
(a,b)
c(x,t)ξ = 〈δ(a− c(x, t;ω))

N∏

j=1

δ(bj − ξj(ω))〉. (7.3.8)
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Taking pR as a shorthand for p
(a,b)
c(x,t)ξ, the evolution equation becomes

∂pR
∂t

= −v·∇pR+
∂

∂a
[a∇v · pR]−Daα

∂

∂a

[
(aα − 1)

(
K + σ̃κ

N∑

j=1

bjφj

)
pR

]
, (7.3.9)

where σ̃κ =
√
3σκ/
√
2ℓ. We take a homogeneous boundary condition in the response

space a and Neunmann as ∂pR(x, a, b)/∂x = 0 at the left end of D. Alternatively,

either when the correlation length is small or large, the evolution of the response PDF

can be approximated by the large-eddy diffusivity (LED) approach. The governing

equation is as follows.

∂pL
∂t

= −∂pL
∂x
− (U4∂pL)

∂a
+

∂

∂a

(
D44

∂pL
∂a

)
, (7.3.10)

where pL denotes p
(a)
c(x,t), and U4 and D44 are called the effective velocity and effective

diffusion coefficients, respectively. The new coefficients are computed as

U4(a, t) = Da(1− a)K − σ2
κDa2(a− 1)

2(Daℓ− 1)





e(Daℓ−1)t/ℓ − 1, t ≤ T (a)

e(Daℓ−1)T/ℓ − 1, t > T (a)

,

and

D44(a, t) =
σ2
κDa

2(a− 1)2

2(2Daℓ− 1)





e(2Daℓ−1)t/ℓ − 1, t ≤ T (a)

e(2Daℓ−1)T/ℓ − 1, t > T (a)

,

with

T (a)
def
=

1

Da
ln

(
1

1− a

)
,

for the uniform reaction rate model. The boundary condition is imposed as in the

REPDF equation.

We consider the system on the physical domain D = [0, 200] with reaction rate

K = 2, and the parameters Da = 0.5, α = 1, and σκ = 2/3. Figure 7.12 illustrates
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Figure 7.12: Gaussian correlated covariance function (a) where the correlation length
varies from lc = 100 to 0.1 and the corresponding sample functions (b). The sample
function illustrates the contrast in the regularity, particularly low at the right end.

the covariance function of κ, where the correlation length varies from 100 to 0.1 to-

wards the right. The global K-L expansion requires more than 200 random variables

to attain 95% of the eigen-spectrum due to its weakly correlated region near x = 200.

Thus, we decompose the domain into D1 = [0, 175] and D2 = [160, 200] according

to the strength of correlation, and compute the statistics of the solution by using

the REPDF equation on D1 and the LED approximation on D2. The computational

cost reduces substantially since the local K-L expansion of κ on D1 only requires

four random variables to attain the same accuracy with the global representation.

Similarly, we also test the case when the noise of the reaction rate is weakly corre-

lated in the middle as in Figure 7.15. For time integration, we use the fourth-order

Runge-Kutta method with time step △t = 10−3.

The interface condition coupling the REPDF and LED systems follows Eq.

(7.3.5), but can be further reduced. This is because the LED system is a response

PDF equation that stands without the excitation variables. Since the LED equation

cannot provide any information about the statistics in the b dimension, the bound-

ary condition on D1 simply reduces to the mean-shifted boundary condition in Eq.
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Figure 7.13: The response PDF solution computed by using combined REPDF-LED
equation (top) and MC simulation with 2000 samples (bottom) at time t = 0.5, 1.0,
and 1.5.

(7.3.3). The interface condition for each trajectory of b becomes

pR(x, a, b) = pR(x, a, b)−
∫
pR(x, a, b)db+ pL(x, a), x ∈ Γ1. (7.3.11)

On the other hand, the boundary condition on D2 is further reduced which can be

simply given by marginalizing the excitation dimensions of the REPDF. In short,

pL(x, a) =

∫
pR(x, a, b)db, x ∈ Γ2. (7.3.12)

Figure 7.13 compares the response PDF of the concentration c(x, t) computed by

the REPDF-LED approach and MC simulation. The MC solution is computed with

2000 samples estimated by the KDE method. We observe that the variance of the

concentration strongly depends on the correlation of the random reaction coefficient,

particularly, the variance decreases for smaller correlation length. The cross sections

of the response PDF at x = 80 and x = 180, i.e., pc(80,t)(a) and pc(180,t)(a) are
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Figure 7.14: Comparison of the response PDF at x = 80 (top) and x = 180 (bottom)
computed by the REPDF-LED approach and MC with 2000 samples.

shown in Figure 7.14. They correspond to the location computed by the REPDF

and LED approach, respectively. Due to its approximative feature, the LED system

induce larger error than the REPDF system. However, the computational cost of

the combined REPDF-LED approach is far less than solving the global REPDF

equation that lies in a 200 dimensional space. Assuming that we use PCM-ANOVA

level 2 for the excitation space, the cost reduces to less than 1%. We also consider

a covariance kernel as in Figure 7.15 where the noise becomes weakly correlated

in the middle of the domain. In this case, the domain is decomposed into three

subdomains {Di}3i=1, where D2 is computed by using the LED approximation. The

PDF solutions at x = 75 and 125 are plotted in Figure 7.16 which is the PDF

solution on the overlapping region, continuity imposed by (7.3.11) and (7.3.12). This

example reveals similar accuracy and reduced computational cost as in the previous

simulation.
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Figure 7.15: The Exponential covariance function of the random field κ(x;ω), where
the correlation length reduces to lc = 0.2 in the middle and lc = 200 elsewhere. The
domain is decomposed as D1 = [0, 80], D2 = [70, 130], and D3 = [120, 200], where D1

and D3 are solved by the REPDF equation and D2 is solved by the LED equation.

t = 0.0 t = 0.4 t = 1.0

0 0.2 0.4 0.6 0.8 1
0

10

20

a

 

 

p
u
(a
)

0 0.2 0.4 0.6 0.8 1
0

10

20

a

 

 

p
u
(a
)

0 0.2 0.4 0.6 0.8 1
0

10

20

a

 

 
p
u
(a
)

0 0.2 0.4 0.6 0.8 1
0

10

20

a

 

 

p
u
(a
)

0  0.2 0.4 0.6 0.8 1  
0 

10

20

a

 

 

p
u
(a
)

0 0.2 0.4 0.6 0.8 1
0

10

20

a

 

 

p
u
(a
)

MCREPDF-LED

Figure 7.16: The REPDF-LED solution and the MC solution using 10000 samples
at different location x = 75 (top) and x = 125 (bottom) on the overlapping region.
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Conditional moment method PDE-constrained method

Computational Cost Cdet

(
N
P

)
· C(M) · nitr · P Cdet

(
N
P

)
· Copt(M,P )

Table 7.4: Comparison between the computational cost of the conditional moment
and the PDE-constrained interface methods. Here Cdet is the cost of the deterministic
solver on a single subdomain, C(M) is the number of (sparse grid) collocation points,
nitr is the Schwarz iteration number, and Copt counts the number of deterministic
solves in the PDE-constrained optimization. In our simulations, Copt is of the same
order of magnitude as C(M).

7.4 Summary

In this chapter we proposed a new general framework for multi-scale propagation of

uncertainty in heterogeneous stochastic systems and SPDEs based on domain decom-

position methods. The key idea relies on new types of interface conditions combined

with reduced-order local representations presented in section 6.3 and generalized

Schwarz methods. We proposed two new algorithms for this purpose, based on con-

ditional moments (section 7.1.1), and PDE-constrained optimization (section 7.1.2).

In both cases, the interface conditions between different subdomains are defined by

low-dimensional functionals of the stochastic solution (e.g., moments or cumulants).

We emphasize that no rigorous theory has yet been developed for stochastic systems

with interfaces defined in terms of functionals of the stochastic field. However, the

numerical results we presented in section 7.2, demonstrate that the SDD methods

we proposed here are relatively accurate and efficient for both linear and nonlinear

problems. The computational cost of the proposed new algorithms is summarized in

Table 7.4. The conditional moment interface method requires a deterministic solve

at each Schwarz iteration within each subdomain. This has to be multiplied by the

number of (sparse grid) collocation points we use to represent the random input

process. On the other hand, the computational cost of PDE-constrained method

is proportional to Copt times the cost a deterministic solve, where Copt in our ex-
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amples is of the same order of magnitude as the number of gPC coefficients in the

local polynomial chaos expansions. Furthermore, the conditional moment interface

method can be easily parallelized and extended to stochastic systems with hybrid

coupling, such as those arising in multi-physics and multi-scale problems. Finally,

the conditional moment based interface method is applied to couple distinct REPDF

systems, that is, to impose interface conditions between the local excitation space

on each subdomains. In section 7.3.2, we apply this method to couple the REPDF

system and the response PDF equation, namely, the LED approximation. It has

been shown that by an appropriate choice of PDF equation according to the local

stochasticity, this approach can significantly reduce the computational cost.



Chapter 8

Summary and future work

8.1 Summary

In this thesis, we have presented the joint response-excitation probability density

approach for uncertainty quantification and multi-scale stochastic simulations.

The evolution equations of REPDF has been derived by using the functional

integral method, which makes the REPDF evolution equations readily available for

nonlinear dynamical systems and first-order PDEs. Various numerical methods for

this system have been developed and they are illustrated in a diagram in Figure 1.2

according to the dimensionality of the stochastic system. The methods are classified

with respect to the dimensionality of the response space and excitation space.

• For low-dimensional systems, we propose high-order spectral methods by using

adaptive discontinuous Galerkin and probabilistic collocation method.

• When high-dimensionality occurs, we explore the use of algorithms involving

the separated series expansion and ANOVA approximation.

• Alternatively for high-dimensions, we develop frameworks to obtain reduced-

order PDF equations by using the Mori-Zwanzig formalism and BBGKY-type

hierarchy.
205
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The effectiveness of the response-excitation theory and the aforementioned numerical

schemes is demonstrated in various stochastic systems including tumor cell model,

chaotic nonlinear oscillators, random transport equation, and Burgers equation sub-

ject to shock waves, considering up to 40-dimensions in the response space (Lorenz-96

system) and 114-dimensions in the excitation space (Advection equation).

We also develop numerical algorithms for uncertainty propagation across de-

composed domains and multi-scale systems. Extensions of KL expansion to multi-

correlated random processes and locally distributed domains provide a framework

to model multiple source of uncertainty in different scales. In addition, the inter-

face methods based on the conditional moments and PDE-constrained optimization

enable efficient stochastic domain decomposition methods that preserve the global

statistics. Eventually, the interface schemes are recast in terms of coupling distinct

PDF systems that significantly reduces the computational cost.

8.2 Future work

Although we have extended the probability density approach for stochastic simula-

tions in various directions, several challenges remain. We list the possible improve-

ments and future directions:

• Advanced high-dimensional numerical technique : Computational efficiency in

extremely high-dimensional stochastic systems would always remain as a big

challenge. Algorithms involving advanced anisotropic tensor decomposition

can assist to overcome the curse of dimensionality. Possible extensions include

Tucker Tensor decomposition [104], Hierarchical Tucker Tensor [72], and Tensor

Train decomposition [139].

Another issue that arises particularly in high-dimensional PDF systems is

achieving conservative properties. In low dimensions, the idea of mass con-
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servative schemes and positivity preserving schemes [87, 153] through numer-

ical flux and limiters can be straightforwardly applied to the discontinuous

Galerkin method. However, it is difficult to guarantee these properties in

high-dimensional approximative algorithms including the proposed SSE and

ANOVA method. Positivity can be achieved through separated series algo-

rithms involving optimization with non-negativity constraints [104, 152]. Still,

mass conservation would be an additional challenge and high-dimensional nu-

merical schemes attaining appropriate features without abandoning computa-

tional efficiency is desirable.

• Long-term integration and CDF evolution equation : There are several issues

arising in long-term PDF simulations. In addition to the numerical difficulties

including stability, some variables can become more like a deterministic variable

which yields the marginalized PDF function as a delta function. Also in sys-

tems that eventually become stable, the transition probability will evolve into

an equilibrium distribution. Thus, detections of these phenomena and proper

conversions between the full REPDF system and an appropriate reduced PDF

system will extend the scope of the probability density approach.

An alternative approach to attain high-resolution in the probability space

would be by considering the cumulative distribution function (CDF). It is

defined as FX(x)
def
= PX(X ≤ x), where PX is the probability density mea-

sure of random variable X . By definition, the CDF is a monotonic increasing

function with boundary condition zero and one on the left end and right end

boundaries, respectively. Moreover, it possesses more regularity than the PDF

which makes this approach numerically more attractive. For instance, the CDF

of a random variable with the probability density prescribed as a delta func-

tion becomes a step function. While the CDF evolution has been employed

to study the advection-reaction equation in [21,206] for one-dimensions in the
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physical space, in high-dimensions, an efficient numerical scheme that ensures

monotonicity in every direction should be developed.

• Goal oriented PDF evolution equation : The proposed MZ-PDF approach is

restricted to the case involving two assumptions. It requires scale separability

in the operator and initial independence between the relevant and irrelevant

variables. In fact, these assumptions cannot be satisfied when we consider the

quantity of interest as a phase space function with the same order of mag-

nitude. To overcome the scale separability, there are several methods using

direct approximations to the memory term, exponential operators, and Krylov

subspace type methods [30, 37, 40], and these approaches can be employed to

generalize the MZ-PDF equation. In addition, the conditional moment closure

can be adopted in the goal oriented framework and an appropriate sensitivity

analysis will enhance its applicability.

• Unified framework of stochastic methods from PDF systems to surrogate mod-

els : Simulation methods of uncertainty quantification can be classified with

respect to the response statistics, for instance, surrogate models that com-

pute the central trend efficiently or extreme value models that capture large

deviations and rare events. On top of that, the PDF approach provides the

entire statistics of the solution, which makes it stand as the highest fidelity

model. Apparently, the computational cost is in general more expensive than

other methods. Thus, an appropriate interface method that couples distinc-

tive stochastic models in space and time will enhance computational efficiency,

while making the PDF solution available at certain location and time.

Extension of PDE-constrained method to couple different stochastic models

is in progress by constructing an appropriate object function, involving arbi-

trary polynomial chaos expansion [138] or Kullback-Leibler divergence [105].
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The time-steppers [3] can assist to adjoin distinct systems with time correlated

noise in different scales. In addition, distribution free Skorokhod-Malliavin

framework proposed by R. Mikulevicius and B. Rozovskii derives reduced-order

stochastic differential equations with proper basis functions corresponding to

the underlying distribution. Interface conditions within this approach man-

aging the transition between distributions with completely distinct properties

would be interesting problem.

• Application to complex systems combined with high-performance computing :

This thesis work has been focused on generalizing the probabilistic models

into a more complex setting involving various types of random excitation and

multi-scale physics with mutual correlation. Therefore, these methods can

be applied to investigate problems that the probabilistic models were over-

simplified through strong assumptions such as Gaussian or Markovian. In

addition, extensions of the methodologies to higher dimensions in the physical

space and parallelization of these algorithms in both the physical space and

the random space would be the next challenge.
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2005, L. M. Pardo, A. Pinkus, E. Süli, and M. J. Todd, eds., no. 331, Cam-
bridge University Press, 2006, pp. 106–161.

[75] P. Grigolini, The projection approach to the problem of colored noise, Physics
Letters, 119 (1981), pp. 183–210.

[76] M. Grigoriu, A class of models for non-stationary Gaussian processes, Prob-
abilistic Engineering Mechanics, 18 (2003), pp. 203–213.

[77] F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large
Eddy Simulation : Computing Turbulent Fluid Dynamics, Cambridge Univer-
sity Press, 2011.

[78] J. Guckenheimer and P. Holmes, Nonlinear oscillation dynamical sys-
tems and bifurcation of vector fields, (1983). Vol. 42 of Applied Mathematical
Sciences.

[79] T. Hagstrom, R. P. Tewarson, and A. Jazcilevich, Numerical exper-
iments on a domain decomposition algorithm for nonlinear elliptic boundary
value problems, Appl. Math. Lett., 1 (1988), pp. 299–302.

[80] M. Hairer and J. Voss, Approximation to the stochastic Burgers equation,
J. Nonlinear Sci., 21 (2011), pp. 897–920.

[81] P. Hänggi, Correlation functions and master equations of generalized (non-
Markovian) Langevin equations, Z. Physik B, 31 (1978), pp. 407–416.

[82] , The functional derivative and its use in the description of noisy dy-
namical systems, in Stochastic processes applied to physics, L. Pesquera and
M. Rodriguez, eds., World Scientific, 1985, pp. 69–95.

[83] , Colored noise in continuous dynamical system, in Noise in nonlinear
dynamical systems (Vol. 1), F. Moss and P. V. E. McClintock, eds., Cambridge
Univ. Press, 1989, pp. 307–347.

[84] P. Hänggi and P. Jung, Colored noise in dynamical systems, in Advances
in Chemical Physics: Volume 89, I. Prigogine and S. A. Rice, eds., Wiley-
Interscience, 1995, pp. 239–326.

[85] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for
time-dependent problems, Cambridge Univ. Press, 2007.

[86] I. Hosokawa and K. Yamamoto, Numerical study of the Burgers’ model of
turbulence based on the characteristic functional formalism, Phys. Fluids, 13
(1970), pp. 1683–1692.



216

[87] X. Y. Hu, N. A. Adams, and C.-W. Shu, Positivity-preserving method
for high-order conservative schemes solving compressible euler equations, J.
Comput. Phys., 242 (2013), pp. 169–180.

[88] S. P. Huang, S. T. Quek, and K. K. Phoon, Convergence study
of the truncated KarhunenLoeve expansion for simulation of stochastic pro-
cesses, International Journal for Numerical Methods in Engineering, 52 (2001),
pp. 1029–1043.

[89] M. Jardak, C.-H. Su, and G. E. Karniadakis, Spectral polynomial chaos
solutions of the stochastic advection equation, J. Sci. Comput., 17 (2002),
pp. 319–338.

[90] R. V. Jensen, Functional integral approach to classical statistical dynamics,
J. Stat. Phys., 25 (1981), pp. 183–210.

[91] B. Jouvet and R. Phythian, Quantum aspects of classical and statistical
fields, Phys. Rev. A, 19 (1979), pp. 1350–1355.

[92] P. Jung and P. Hänggi, Dynamical systems: a unified colored-noise ap-
proximation, Phys. Rev. A, 35 (1987), pp. 4464–4466.

[93] , Optical instabilities: new theories for colored-noise-driven laser instabil-
ities, J. Opt. Soc. Am. B, 5 (1988), pp. 979–986.

[94] N. G. V. Kampen, A cumulant expansion for stochastic linear differential
equations. II, Physica, 74 (1974), pp. 239–247.

[95] , Stochastic processes in physics and chemistry, North Holland, third ed.,
2007.

[96] R. P. Kanwal, Generalized functions: theory and technique, Birkhäuser
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